Hand-held smart devices are equipped with powerful processing units, high resolution screens and cameras, that in combination makes them suitable for video see-through Augmented Reality. Many Augmented Reality applications require interaction, such as selection and 3D pose manipulation. One way to perform intuitive, high precision 3D pose manipulation is by direct or indirect mapping of device movement.There are two approaches to device movement interaction; one fixes the virtual object to the device, which therefore becomes the pivot point for the object, thus makes it difficult to rotate without translate. The second approach avoids latter issue by considering rotation and translation separately, relative to the object's center point. The result of this is that the object instead moves out of view for yaw and pitch rotations.In this paper we study these two techniques and compare them with a modification where user perspective rendering is used to solve the rotation issues. The study showed that the modification improves speed as well as both perceived control and intuitiveness among the subjects.
The interest for surgery simulator systems with anatomical models generated from authentic patient data is growing as these systems evolve. With access to volumetric patient data, e.g., from a computer tomography scan, haptic and visual feedback can be created directly from this dataset. This opens the door for patient specific simulations. Hip fracture surgery is one area where simulator systems is useful to train new surgeons and plan operations. To simulate the drilling procedure in this type of surgery, a repositioning of the fractured bone into correct position is first needed. This requires a segmentation process in which the bone segments are identified and the position of the dislocated part is determined. The segmentation must be automatic to cope with the large amount of data from the computer tomography scan. This work presents the first steps in the development of a hip fracture surgery simulation with patient specific models. Visual and haptic feedback is generated from the computer tomography data by simulating fluoroscopic images and the drilling process. We also present an automatic segmentation method to identify the fractured bone and determine the dislocation. This segmentation method is based on nonrigid registration with the Morphon method.
Abstract. Understanding and explaining perception of touch is a nontrivial task. Even seemingly trivial differences in exploration may potentially have a significant impact on perception and levels of discrimination. In this study, we explore different aspects of contact related to stiffness perception and their effects on the just noticeable difference (JND) of stiffness are surveyed. An experiment has been performed on nondeformable, compliant objects in a virtual environment with three different types of contact: Discontinuous pressure, continuous pressure and continuous lateral motion. The result shows a significantly better discrimination performance in the case of continuous pressure (a special case of nonlinearity), which can be explained by the concept of haptic memory. Moreover, it is found that the perception is worse for the changes that occur along the lateral axis than the normal axis.
The advent of nanoscientific applications in modern life is swiftly in progress. Nanoscale innovation comes with the pressing need to provide citizens and learners with scientific knowledge for judging the societal impact of nanotechnology. In rising to the challenge, this paper reports the developmental phase of a research agenda concerned with building and investigating a virtual environment for communicating nano-ideas. Methods involved elucidating core nano-principles through two purposefully contrasting nano “risk” and “benefit” scenarios for incorporation into an immersive system. The authors implemented the resulting 3D virtual architecture through an exploration of citizens' and school students' interaction with the virtual nanoworld. Findings suggest that users' interactive experiences of conducting the two tasks based on gestural interaction with the system serve as a cognitive gateway for engendering nano-related understanding underpinning perceived hopes and fears and as a stimulating pedagogical basis from which to teach complex science concepts.
aAs the application of nanotechnology in everyday life impacts society, it becomes critical for citizens to have a scientific basis upon which to judge their perceived hopes and fears of 'nano'. Although multiple instruments have been designed for assessing attitudinal and affective aspects of nano, surprisingly little work has focused on developing tools to evaluate the conceptual knowledge dimension of public understanding. This article reports the validation of an instrument designed to measure conceptual knowledge of nanoscience and nanotechnology. A sample of 302 participants responded to a 28-item questionnaire designed around core nano-concepts. Factor analysis revealed a single latent variable representing the construct of nano-knowledge. Cronbach's alpha was 0.91 indicating a high internal consistency of the questionnaire items. The mean test score was 15.3 out of 28 (54.5%) with item difficulty indices ranging from 0.19 to 0.89. Obtained item discrimination values indicate a high discriminatory power of the instrument. Taken together, the psychometric properties of the Nano-Knowledge Instrument (NanoKI) suggest that it is a valid and reliable tool for measuring nano-related knowledge. Preliminary qualitative observations of citizens' incorrect and correct response patterns to the questionnaire indicate potential conceptual challenges surrounding relative size of the nanoscale, random motion of nano-objects, and nanoscale interactions, although these are hypotheses that require future investigation. Application of the NanoKI could support efforts directed to an agenda for evaluating and designing science communication and education initiatives for promoting understanding of nano. IntroductionNanoscience is rapidly becoming a revolutionary and core component of research interconnected with multiple areas of scientific endeavour (Roco, 2003;Whitesides, 2005). Absorption of real practical applications of nanoscience and nanotechnology into the daily life of citizens is underway (Sealy, 2006). While the implications of 'nano' continue to emerge in manifestations of cutting-edge nanomaterials and nanotherapeutics, many contemporary scholars (e.g., Roco and Bainbridge, 2005;Burri and Bellucci, 2008), deem it crucial that the international public be actively involved in discussion, decisions and policy associated with nano. In this regard, Laherto (2010) and Gilbert and Lin (2013) advocate the urgent implementation of a nano-education vision that not only caters to formal academic demands necessary for accruing nanocompetent workers, but also considers informal public dimensions in evoking the societal implications of nanoscience.This need is succinctly captured in Laherto's (2010) assertion that, "all citizens will soon need some kind of 'nano-literacy' in order to navigate important science-based issues related to their everyday lives and society" (p. 161).The nano-revolution is playing out in the convergence of nano with new technological innovation. The inevitable impact of nano on society requires interna...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.