For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is sufficient to prove them for snarks, the class of nontrivial 3-regular graphs which cannot be 3-edge coloured.In the first part of this paper we present a new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous programs for generating snarks, and 29 times faster for generating weak snarks. Using this program we have generated all non-isomorphic snarks on n ≤ 36 vertices. Previously lists up to n = 28 vertices have been published.In the second part of the paper we analyze the sets of generated snarks with respect to a number of properties and conjectures. We find that some of the strongest versions of the cycle double cover conjecture hold for all snarks of these orders, as does Jaeger's Petersen colouring conjecture, which in turn implies that Fulkerson's conjecture has no small counterexamples. In contrast to these positive results we also find counterexamples to eight previously published conjectures concerning cycle coverings and the general cycle structure of cubic graphs.
In this note we construct two infinite snark families which have high oddness and low circumference compared to the number of vertices. Using this construction, we also give a counterexample to a suggested strengthening of Fulkerson's conjecture by showing that the Petersen graph is not the only cyclically 4-edge connected cubic graph which require at least five perfect matchings to cover its edges. Furthermore the counterexample presented has the interesting property that no 2-factor can be part of a cycle double cover.
A permutation snark is a snark which has a 2-factor F 2 consisting of two chordless circuits; F 2 is called the permutation 2-factor of G. We construct an infinite family H of cyclically 5-edge connected permutation snarks. Moreover, we prove for every member G ∈ H that the permutation 2-factor given by the construction of G is not contained in any circuit double cover of G.
In this paper we study Petersen-colorings and strong Petersen-colorings on some well known families of snarks, e.g. Blanuša snarks, Goldberg snarks and flower snarks. In particular, it is shown that flower snarks have a Petersen-coloring but they do not have a strong Petersen-coloring. Furthermore it is proved that possible minimum counterexamples to Jaeger's Petersen-coloring conjecture do not contain a specific subdivision of K 3,3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.