The present study compares the physico-chemical properties of non-aqueous liquid electrolytes based on NaPF6, NaClO4 and NaCF3SO3 salts in the binary mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). The ionic conductivity of the electrolytes is determined as a function of salt concentration and temperature. It is found that the electrolytes containing NaClO4 and NaPF6 exhibit ionic conductivities ranging from 5 mS cm(-1) to 7 mS cm(-1) at ambient temperature. The electrochemical stability window of the different electrolytes is studied by linear sweep voltammetry (LSV) and cyclic voltammetry (CV) measurements with respect to a variety of working electrodes (WE) such as glassy carbon (GC), graphite and a carbon gas diffusion layer (GDL). Electrolytes containing NaPF6 and NaClO4 are found to be electrochemically stable with respect to GC and GDL electrodes up to 4.5 V vs. Na/Na(+), with some side reactions starting from around 3.0 V for the latter salt. The results further show that aluminium is preferred over different steels as a cathode current collector. Copper is stable up to a potential of 3.5 V vs. Na/Na(+). In view of practical Na-ion battery systems, the electrolytes are electrochemically tested with Na0.7CoO2 as a positive electrode. It is inferred that the electrolyte NaPF6-EC : DMC is favorable for the formation of a stable surface film and the reversibility of the above cathode material.
Thermally stable, ordered mesoporous thin films of 8 mol % yttria-stabilized zirconia (YSZ) were prepared by solution-phase coassembly of chloride salt precursors with an amphiphilic diblock copolymer using an evaporation-induced self-assembly process. The resulting material is of high quality and exhibits a well-defined three-dimensional network of pores averaging 24 nm in diameter after annealing at 600 °C for several hours. The wall structure is polycrystalline, with grains in the size range of 7 to 10 nm. Using impedance spectroscopy, the total electrical conductivity was measured between 200 and 500 °C under ambient atmosphere as well as in dry atmosphere for oxygen partial pressures ranging from 1 to 10(-4) bar. Similar to bulk YSZ, a constant ionic conductivity is observed over the whole oxygen partial pressure range investigated. In dry atmosphere, the sol-gel derived films have a much higher conductivity, with different activation energies for low and high temperatures. Overall, the results indicate a strong influence of the surface on the transport properties in cubic fluorite-type YSZ with high surface-to-volume ratio. A qualitative defect model which includes surface effects (annihilation of oxygen vacancies as a result of water adsorption) is proposed to explain the behavior and sensitivity of the conductivity to variations in the surrounding atmosphere.
To be competitive with other electrically rechargeable large scale energy storage, the range of active materials for redox flow batteries is currently expanded by organic compoundsthis holds especially for the redox active material class of quinones that can be derived from naturally abundant resources at low cost. Here we propose the modified quinone 2,3-diaza-anthracenedione, and two of its derivatives, as a promising active material for aqueous redox flow batteries. We systematically study the electrochemical performance (redox potentials, rate constants, diffusion coefficients) for these three compounds at different pH values experimentally and complement the results with density functional calculations: A positive redox potential shift of about 300 mV is achieved by the incorporation of a diaza moiety into the anthraquinone base structure. Our experiments at low pH show that the addition of a methoxy group to the base structure of the 2,3-diaza-anthracenedione strongly increases the electrochemical stability in aqueous acidic mediaalthough the impact of the conjugate base is not clear yet. Furthermore, a functionalization with two hydroxyl groups evokes a negative redox potential shift of 54 mV in acidic and 264 mV in alkaline solution. This demonstrates that this novel class of compounds is very versatile and can be tailor-made for use as active material in redox flow batterieseither in alkaline or acidic media. The 2,3-diaza-anthracenediones presented in this study were used as anolyte active materials in a full redox flow cell as a proof of concept; best cycling stability was achieved with 2,3-diaza-anthracenediones functionalized with a methoxy group as active material. Transferring our findings to other quinone base structures, such as naphthoquinones, could lead to even better performing catholyte and anolyte active materials for future redox flow batteries with organic active material.
To enable cost-efficient stationary energy storage, organic active materials are the subject of current investigations with regard to their application in aqueous redox flow batteries. Especially quinones with their beneficial electrochemical properties and natural abundance pose a promising class of compounds for this challenging endeavor. Yet, there are not many active materials available for the catholyte side to realize solely quinone-based systems. Herein we introduce the novel hydroquinone 5,8dihydroxy-2,3-phthalazine together with two of its derivatives and propose it as a promising active material for the catholyte side of aqueous redox flow batteries. We systematically investigate the electrochemical properties as well as the structure−property relationship of this class of compounds. The unmodified dihydroxyphthalazine exhibits a favorably high redox potential of 796 mV vs SHE in acidic solution that is competitive with benzoquinone compounds. Moreover, the introduced dihydroxyphthalazines feature a high electron transfer rate surpassing benzoquinone species by almost one order of magnitude. With regard to stable cycling performance, we further achieved a high resilience against detrimental side reactions such as Michael addition by adding methyl substituents to the base structure. Our experimental findings are supported and extended by theoretical considerations in terms of density functional theory calculations. With this combined approach we outline further promising dihydroxyphthalazine-based materials with regard to performance-relevant quantities like redox potential, cycling stability, and water solubility. This study aims to propel further research in the field of quinone-based active materials for the catholyte of future aqueous redox flow batteries.
A multitude of factors contribute to the performance of redox flow batteries with organic active material. In this work, experimental and theoretical methods are elucidated to give information about the most important of these: redox potential, kinetic rate constant, diffusion constant, and solubility. They are found to be highly interdependent -especially for different solvents. By implication, novel organic active materials have to be analyzed jointly by chemists, materials scientists, and by reaction and process engineers to propel the redox flow battery as future energy storage device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.