Tight control of cell division is essential for survival of most organisms. For prokaryotes, the regulatory mechanisms involved in the control of cell division are mostly unknown. We show that the small non-coding sRNA StsR has an important role in controlling cell division and growth in the alpha-proteobacterium Rhodobacter sphaeroides. StsR is strongly induced by stress conditions and in stationary phase by the alternative sigma factors RpoHI/HII, thereby providing a regulatory link between cell division and environmental cues. Compared to the wild type, a mutant lacking StsR enters stationary phase later and more rapidly resumes growth after stationary phase. A target of StsR is UpsM, the most abundant sRNA in the exponential phase. It is derived from partial transcriptional termination within the 5′ untranslated region of the mRNA of the division and cell wall (dcw) gene cluster. StsR binds to UpsM as well as to the 5′ UTR of the dcw mRNA and the sRNA-sRNA and sRNA-mRNA interactions lead to a conformational change that triggers cleavage by the ribonuclease RNase E, affecting the level of dcw mRNAs and limiting growth. These findings provide interesting new insights into the role of sRNA-mediated regulation of cell division during the adaptation to environmental changes.
Temperature above the physiological optimum is a stress condition frequently faced by bacteria in their natural environments. Here, we were interested in the correlation between levels of RNA and protein under heat stress. Changes in RNA and protein levels were documented in cultures of Rhodobacter sphaeroides using RNA sequencing, quantitative mass spectrometry, western blot analysis, in vivo [ 35 S] methioninelabelling and plasmid-borne reporter fusions. Changes in the transcriptome were extensive. Strikingly, the proteome remained unchanged except for very few proteins. Examples include a heat shock protein, a DUF1127 protein of unknown function and sigma factor proteins from leaderless transcripts. Insight from this study indicates that R. sphaeroides responds to heat stress by producing a broad range of transcripts while simultaneously preventing translation from nearly all of them, and that this selective production of protein depends on the untranslated region of the transcript. We conclude that measurements of transcript abundance are insufficient to understand gene regulation. Rather, translation can be an important checkpoint for protein expression under certain environmental conditions. Furthermore, during heat shock, regulation at the level of transcription might represent preparation for survival in an unpredictable environment while regulation at translation ensures production of only a few proteins.
Inducible gene expression is useful for biotechnological applications and for studying gene regulation and function in bacteria. Many inducible systems that perform in model organisms such as the Gammaproteobacterium Escherichia coli do not perform well in other bacteria that are of biotechnological interest. Typical problems include weak or leaky expression. Here, we describe an invention named ACIT (Alphaproteobacteria chromosomally integrating transcription-control cassette) that is carried on a suicide plasmid to enable insertion into the chromosome of the host. ACIT consists of multiple DNA fragments specifically arranged in a cassette that allows tight transcription control over any gene or gene cluster of interest following homologous recombination. At the heart of the invention is the ability to modify or exchange parts, e.g., promoters, to suit particular bacteria and growth conditions, allowing for customized gene expression control. Furthermore, ACIT provides a basis for a design–build–test approach for controlling gene expression in less studied bacteria. We describe examples of its control over pigment and exopolysaccharide production, growth, cell form, and social behavior in various Alphaproteobacteria.
Energie-getriebener Transport durch die äußere Membran von Escherichia coli ÿ Neue Anti-Gram-negative Leitstruktur mit dualem Wirkmechanismus ÿ Sulfatierte Zeckenspucke hilft bei Entzündungen Substrate werden durch die äußere Membran (OM) Gram-negativer Bakterien über Diffusion, erleichterte Diffusion oder aktiven Transport aufgenommen. Da die OM kein Membranpotenzial und keine energiereichen Substrate enthält, bedarf es für den aktiven Transport eines besonderen Mechanismus der Energiebereitstellung. Tomasz Pienko und Joanna Trylska (PLoS Comput Biol, https:doi.org/10.1371/ journa.pcbi.1008024) untersuchten einen aktiven Transporter mit biophysikalischen Verfahren (conventional molecular dynamics simulation, steered molecular dynamics (SMD), umbrella sampling, Gaussian force-simulated annealing).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.