Marine imaging is transforming into a sensor technology applied for high throughput sampling. In the context of habitat mapping, imaging establishes thereby an important bridge technology regarding the spatial resolution and information content between physical sampling gear (e.g., box corer, multi corer) on the one end and hydro-acoustic sensors on the other end of the spectrum of sampling methods. In contrast to other scientific imaging domains, such as digital pathology, there are no protocols and reports available that guide users (often referred to as observers) in the non-trivial process of assigning semantic categories to whole images, regions, or objects of interest (OOI), which is referred to as annotation. These protocols are crucial to facilitate image analysis as a robust scientific method. In this article we will review the past observations in manual Marine Image Annotations (MIA) and provide (a) a guideline for collecting manual annotations, (b) definitions for annotation quality, and (c) a statistical framework to analyze the performance of human expert annotations and to compare those to computational approaches.
An array of sensors, including an HD camera mounted on a Fixed Underwater Observatory (FUO) were used to monitor a cold-water coral (
Lophelia pertusa
) reef in the Lofoten-Vesterålen area from April to November 2015. Image processing and deep learning enabled extraction of time series describing changes in coral colour and polyp activity (feeding). The image data was analysed together with data from the other sensors from the same period, to provide new insights into the short- and long-term dynamics in polyp features. The results indicate that diurnal variations and tidal current influenced polyp activity, by controlling the food supply. On a longer time-scale, the coral’s tissue colour changed from white in the spring to slightly red during the summer months, which can be explained by a seasonal change in food supply. Our work shows, that using an effective integrative computational approach, the image time series is a new and rich source of information to understand and monitor the dynamics in underwater environments due to the high temporal resolution and coverage enabled with FUOs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.