Malignant pleural mesothelioma (MPM) is an aggressive cancer with a poor prognosis and an increasing incidence, for which novel therapeutic strategies are urgently required. Since the immune system has been described to play a presumed role in the protection against MPM, characterization of its tumor immune microenvironment (TME) and immune checkpoints can identify new immunotherapeutic targets and their predictive and/or prognostic value.To characterize the TME and the immune checkpoint expression profile, we performed immunohistochemistry (IHC) on formalin-fixed paraffin embedded (FFPE) tissue sections from 54 MPM patients (40 at time of diagnosis; 14 treated with chemotherapy). We stained for PD-1, PD-L1, TIM-3, LAG-3, CD4, CD8, CD45RO, granzyme B, FoxP3 and CD68. Furthermore, we analyzed the relationship between the immunological parameters and survival, as well as response to chemotherapy. We found that TIM-3, PD-1 and PD-L1 were expressed on both immune and tumor cells. Strikingly, PD-1 and PD-L1 expression on tumor cells was only seen in unpretreated samples. No LAG-3 expression was observed. CD45RO expression in the stroma was an independent negative predictive factor for response on chemotherapy, while CD4 and TIM-3 expression in lymphoid aggregates were independent prognostic factors for better outcome. Our data propose TIM-3 as a promising new target in mesothelioma. Chemotherapy influences the expression of immune checkpoints and therefore further research on the best combination treatment schedule is required.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.
In this paper, two types of melanoma and glioblastoma cancer cell lines are treated with cold atmospheric plasma to assess the effect of several parameters on the cell viability. The cell viability decreases with treatment duration and time until analysis in all cell lines with varying sensitivity. The majority of dead cells stains both AnnexinV (AnnV) and propidium iodide, indicating that the plasma‐treated non‐viable cells are mostly late apoptotic or necrotic. Genetic mutations might be involved in the response to plasma. Comparing the effects of two gas mixtures, as well as indirect plasma‐activated medium versus direct treatment, gives different results per cell line. In conclusion, this study confirms the potential of plasma for cancer therapy and emphasizes the influence of experimental parameters on therapeutic outcome.
Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death in Western countries with a 5-year survival rate below 5%. One of the hallmarks of this cancer is the strong desmoplastic reaction within the tumor microenvironment (TME), orchestrated by activated pancreatic stellate cells (PSC). This results in a functional and mechanical shield which causes resistance to conventional therapies. Aiming to overcome this resistance by tackling the stromal shield, we assessed for the first time the capacity of IL-15 stimulated natural killer (NK) cells to kill PSC and pancreatic cancer cells (PCC). The potency of IL-15 to promote NK cell-mediated killing was evaluated phenotypically and functionally. In addition, NK cell and immune checkpoint ligands on PSC were charted. We demonstrate that IL-15 activated NK cells kill both PCC and PSC lines (range 9-35% and 20-50%, respectively) in a contact-dependent manner and significantly higher as compared to resting NK cells. Improved killing of these pancreatic cell lines is, at least partly, dependent on IL-15 induced upregulation of TIM-3 and NKG2D. Furthermore, we confirm significant killing of primary PSC by IL-15 activated NK cells in an ex vivo autologous system. Screening for potential targets for immunotherapeutic strategies, we demonstrate surface expression of both inhibitory (PD-L1, PD-L2) and activating (MICA/B, ULBPs and Galectin-9) ligands on primary PSC. These data underscore the therapeutic potential of IL-15 to promote NK cell-mediated cytotoxicity as a treatment of pancreatic cancer and provide promising future targets to tackle remaining PSC.
The immune checkpoint molecule CD70 and its receptor CD27 are aberrantly expressed in many hematological and solid malignancies. Dysregulation of the CD70-CD27 axis within the tumor and its microenvironment is associated with tumor progression and immunosuppression. This is in contrast to physiological conditions, where tightly controlled expression of CD70 and CD27 plays a role in co-stimulation in immune responses. In hematological malignancies, cancer cells co-express CD70 and CD27 promoting stemness, proliferation and survival of malignancy. In solid tumors, only expression of CD70 is present on the tumor cells which can facilitate immune evasion through CD27 expression in the tumor microenvironment. The discovery of these tumor promoting and immunosuppressive effects of the CD70-CD27 axis has unfolded a novel target in the field of oncology, CD70.In this review, we thoroughly discuss current insights into expression patterns and the role of the CD70-CD27 axis in hematological and solid malignancies, its effect on the tumor microenvironment and (pre)clinical therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.