BackgroundIschemia and reperfusion (I/R) is one of the major causes of acute kidney injury (AKI). Citrate reduces hypoxia-induced mitochondrial energetic deficits in isolated proximal tubules. Moreover, citrate anticoagulation is now frequently used in renal replacement therapy. In the present study a rat model of I/R-induced AKI was utilized to examine renal protection by citrate in vivo.MethodsAKI was induced by bilateral renal clamping (40 min) followed by reperfusion (3 h). Citrate was infused at three different concentrations (0.3 mmol/kg/h; 0.6 mmol/kg/h and 1.0 mmol/kg/h) continuously for 60 min before and 45 min after ischemia. Plasma calcium concentrations were kept stable by infusion of calcium gluconate. The effect of citrate was evaluated by biomonitoring, blood and plasma parameters, histopathology and tissue ATP content.ResultsIn comparison to the normoxic control group bilateral renal ischemia led to an increase of creatinine and lactate dehydrogenase activity and a decrease in tissue ATP content and was accompanied by a drop in mean arterial blood pressure. Infusion of 1.0 mmol/kg/h citrate led to lower creatinine and reduced LDH activity compared to the I/R control group and a tendency for higher tissue ATP content. Pre-ischemic infusion of 1.0 mmol/kg/h citrate stabilized blood pressure during ischemia.ConclusionsCitrate has a protective effect during I/R-induced AKI, possibly by limiting the mitochondrial deficit as well as by beneficial cardiovascular effects. This strengthens the rationale of using citrate in continuous renal replacement therapy and encourages consideration of citrate infusion as a therapeutic treatment for AKI in humans.Electronic supplementary materialThe online version of this article (doi:10.1186/s12882-017-0546-1) contains supplementary material, which is available to authorized users.
BACKGROUND AND PURPOSE: For diagnosis of medulloblastoma, the updated World Health Organization classification now demands for genetic typing, defining more precisely the tumor biology, therapy, and prognosis. We investigated potential associations between magnetic resonance imaging (MRI) parameters including apparent diffusion coefficient (ADC) and neuropathologic features of medulloblastoma, focusing on genetic subtypes. METHODS: This study was a retrospective single-center analysis of 32 patients (eight females, median age = 9 years [range, 1-57], mean 12.6 ± 11.3) from 2012 to 2019. Genetic subtypes (wingless [WNT]; sonic hedgehog [SHH]; non-WNT/non-SHH), histopathology, immunohistochemistry (p53, Ki67), and the following MRI parameters were correlated: tumor volume, location (midline, pontocerebellar, and cerebellar hemisphere), edema, hydrocephalus, metastatic disease (presence/absence and each), contrast-enhancement (minor, moderate, and distinct), cysts (none, small, and large), hemorrhage (none, minor, and major), and ADC mean. The ADC mean was calculated using manually set regions of interest within the solid tumor. Statistics comprised univariate and multivariate testing. RESULTS: Out of 32 tumors, three tumors were WNT activated (9.4%), 13 (40.6%) SHH activated, and 16 (50.0%) non-WNT/non-SHH. Hemispherical location (n = 7/8, P = .003) and presence of edema (8/8; P < .001, specificity 100%, positive predictive value 100%) were significantly associated with SHH activation. The combined parameter "no edema + no metastatic disease + cysts" significantly discriminated WNT-activated from SHH-activated medulloblastoma (P = .036). ADC mean (10-6 mm 2 /s) was 484 for WNT-activated, 566 for SHH-activated, and 624 for non-WNT/non-SHH subtypes (P = .080). A significant negative correlation was found between ADC mean and Ki67 (r =-.364, P = .040). CONCLUSION: MRI analysis enabled noninvasive differentiation of SHH-activated medulloblastoma. ADC alone was not reliable for genetic characterization, but associated with tumor proliferation rate.
Una irrigaci6n arterial an6mala en la suprarrenal, rifi6n y ovario.En el presente trabajo se discuten arterias an6malas halladas en un feto humano a tBrmino. En la arteria renal derecha
Objectives The aim was to assess the type, frequency and impact of MRI-related complications in patients with cochlear implants (CI) and MRI indications in different body regions. Methods For that purpose, the institutional radiology database of a single tertiary hospital was searched for patients with a CI who underwent MRI between 2001 and 2018. The number of MRI examinations and complications were retrieved from the patient record. Examinations were categorized into five distinct body regions or combinations thereof. Records of CI artifacts in the head also included basic information on diagnostic image quality. Results Out of 1017 MRI database entries (examinations) of patients with a CI, 91 records were after implantation (71 patients) and 66 were attempted (no contraindications, 49 patients). In four cases (4/66, 6.1%), the magnet was dislocated and had to be replaced surgically. Three out of four severe complications occurred for examination regions outside the head. Thirteen MRI examinations were aborted due to pain (19.7%) and one because of artifacts—resulting in 48 scans (72.7%) completed successfully (36 patients). All cranial scans featured device artifacts in all sequences, but the majority of them did not affect proper imaging diagnostics in the respective region. Conclusion This retrospective, single-center analysis of patients with MRI-conditional cochlear implants shows that MRI-related complications were common, at least in models with a fixed magnet, despite appropriate precautions and compliance with the manufacturers’ guidelines. MRI examinations of CI patients should therefore be indicated strictly until the exact causes have been clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.