Sugar units in natural products are pharmacokinetically important but often redundant and therefore obstructing the study of the structure and function of the aglycon. Therefore, it is recommended to remove the sugars before a theoretical or experimental study of a molecule. Deglycogenases, enzymes that specialized in sugar removal from small molecules, are often used in laboratories to perform this task. However, there is no standardized computational procedure to perform this task in silico. In this work, we present a systematic approach for in silico removal of ring and linear sugars from molecular structures. Particular attention is given to molecules of biological origin and to their structural specificities. This approach is made available in two forms, through a free and open web application and as standalone open-source software.
Natural products (NPs), biomolecules produced by living organisms, inspire the pharmaceutical industry and research due to their structural characteristics and the substituents from which they derive their activities. Glycosidic residues are frequently present in NP structures and have particular pharmacokinetic and pharmacodynamic importance as they improve their solubility and are often involved in molecular transport, target specificity, ligand–target interactions, and receptor binding. The COlleCtion of Open Natural prodUcTs (COCONUT) is currently the largest open database of NPs, and therefore a suitable starting point for the detection and analysis of the diversity of glycosidic residues in NPs. In this work, we report and describe the presence of circular, linear, terminal, and non-terminal glycosidic units in NPs, together with their importance in drug discovery.
The Ertl algorithm for automated functional groups (FG) detection and extraction of organic molecules is implemented on the basis of the Chemistry Development Kit (CDK). A distinct impact of the chosen CDK aromaticity model is demonstrated by an FG analysis of the ChEMBL database compounds. The average performance of less than a millisecond for a single-molecule FG extraction allows for fast processing of even large compound databases.
Simplified Particle Input ConnEction Specification (SPICES) is a particle-based molecular structure representation derived from straightforward simplifications of the atom-based SMILES line notation. It aims at supporting tedious and error-prone molecular structure definitions for particle-based mesoscopic simulation techniques like Dissipative Particle Dynamics by allowing for an interplay of different molecular encoding levels that range from topological line notations and corresponding particle-graph visualizations to 3D structures with support of their spatial mapping into a simulation box. An open Java library for SPICES structure handling and mesoscopic simulation support in combination with an open Java Graphical User Interface viewer application for visual topological inspection of SPICES definitions are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.