Somatostatin (SMS) scintigraphy is widely used for the detection and staging of neuroendocrine tumours. Because of its superior imaging properties, there is growing interest in the use of positron emission tomography (PET) technology for SMS scintigraphy. This study addressed the production of gallium-68 DOTATOC, its biokinetics and its clinical performance in detecting SMS-positive tumours and metastases. A preparation protocol was developed, yielding 40% overall incorporation of (68)Ga into the peptide (DOTATOC). After column filtration, the radiochemical purity exceeded 98%. Eight patients with histologically verified carcinoid tumours were injected with 80-250 MBq of this tracer. PET acquisition was initiated immediately after administration and carried out until 3 h post injection. Images were quantitated using standardised uptake values and target to non-target ratios. Prior to (68)Ga-DOTATOC PET, all patients underwent indium-111 octreotide planar and single-photon emission tomographic (SPET) imaging. Arterial activity elimination was bi-exponential, with half-lives of 2.0 (+/-0.3) min and 48 (+/-7) min. No radioactive metabolites were detected within 4 h in serum. Maximal tumour activity accumulation was reached 70+/-20 min post injection. Kidney uptake averaged <50% compared with spleen uptake. Of 40 lesions predefined by computed tomography and/or magnetic resonance imaging, (68)Ga-DOTATOC PET identified 100%, whereas (111)In-octreotide planar and SPET imaging identified only 85%. Tumour to non-tumour ratios ranged from >3:1 for liver ((111)In-octreotide: 1.5:1) to 100:1 for CNS ((111)In-octreotide: 10:1). With (68)Ga-DOTATOC >30% additional lesions were detected. It is concluded that PET using (68)Ga-DOTATOC results in high tumour to non-tumour contrast and low kidney accumulation and yields higher detection rates as compared with (111)In-octreotide scintigraphy.
Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed. Here, we have developed new mouse models in which intersectional Cre/Dre-dependent recombination allowed for successful labeling, translational profiling and functional characterization of distinct POMC neurons expressing the leptin receptor (Lepr) and glucagon like peptide 1 receptor (Glp1r). Our experiments reveal that POMCLepr+ and POMCGlp1r+ neurons represent largely nonoverlapping subpopulations with distinct basic electrophysiological properties. They exhibit a specific anatomical distribution within the arcuate nucleus and differentially express receptors for energy-state communicating hormones and neurotransmitters. Finally, we identify a differential ability of these subpopulations to suppress feeding. Collectively, we reveal a notably distinct functional microarchitecture of critical metabolism-regulatory neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.