CHARMM force field parameter values for a class of oligothiophene derivatives have been derived with reference to density functional theory/B3LYP potential energy surfaces. The force field parametrization of these luminescent conjugated polyelectrolytes includes the electronic ground state as well as the strongly light absorbing first excited state. In conjunction with quantum chemical response theory calculations of transition state properties, a molecular dynamical model of the Stokes shift is obtained. The theoretical model is benchmarked against experimental data recorded at room temperature which refer to sodium salts of p-HTAA and p-FTAA with distilled water as a solvent. For p-HTAA the theoretically predicted Stokes shift of 112 nm is in good agreement with the experimental result of 124 nm, given the approximations about exciton localization that were introduced to obtain a force field for the excited state.
A methodological development is reported for the study of luminescence properties of conjugated polyelectrolytes, encompassing systems in which dihedral rotational barriers are easily overcome at room temperature. The components of the model include (i) a molecular mechanics (MM) force field description of the solvent in its electronic ground state as well as the chromophore in its electronic ground and excited states, (ii) a conformational sampling by means of classical molecular dynamics (MD) in the respective electronic states, and (iii) spectral response calculations by means of the quantum mechanics/molecular mechanics QM/MM approach. A detailed analysis of the combined polarization effects of the ionic moiety and the polar water solvent is presented. At an increased computational cost of 30% compared to a calculation excluding the solvent, the error in the transition wavelength of the dominant absorption band is kept as small as 1 nm as compared to the high-quality benchmark result, based largely on a QM description of the solvent. At a reduced computational cost the error of the same quantity is kept as small as 6 nm, with the cost reduction being the result of an effective description of the effects of the solvent by means of replacing the carboxylate ions with neutral hydrogens. In absorption spectroscopy, the obtained best theoretical results are in excellent agreement with the experimental benchmark measurement, regarding excitation energies as well as band intensities and profiles. In fluorescence spectroscopy, the experimental spectrum shows a vibrational progression that is not addressed by theory, but the theoretical band position is in excellent agreement with experiment, with a highly accurate description of the Stokes shift as a result.
Molecular and electronic structures and optical absorption properties of oligothiophenes used for spectral assignment of amyloid deposits have been investigated for a family of probes known as luminescent conjugated oligothiophenes (LCOs). Theoretical absorption spectra have been determined using conformational averaging, combining classical molecular dynamics (MD) simulations with quantum mechanical/molecular mechanics (QM/MM) time-dependent density functional theory (TD-DFT) spectrum calculations. Theoretical absorption spectra are in excellent agreement with experiments, showing average errors below 5 nm for absorption maxima. To couple observed properties to molecular structures, a measure of planarity is defined, revealing a strong correlation between the transition wavelength of the first and dominating electronically excited state and dihedral rotations. It is shown that from this correlation, predictions can be made of the absorption properties of probes based only on information from MD trajectories. We show experimentally that red shifts observed in the excitation maxima of LCOs when bound to amyloid protein aggregates are also evident in absorption spectra. We predict that these red shifts are due to conformational restriction of the LCO in a protein binding pocket, causing a planarization of the conjugated backbone. On the basis of our studies of planarity, it is shown that such shifts are both possible and realistic.
Infrared (IR) absorption and vibrational Raman spectra of a family of branched oligothiophenes have been determined experimentally as well as theoretically. The molecular spectra have been compared to those of the linear analogues, with identification made of spectral features due to structural properties that are valued in organic solar cell applications. The theoretical spectra have been obtained through a newly developed method in which individual conformer spectra, calculated at the time-dependent DFT level in this work, are weighted by statistics extracted from classical molecular dynamics trajectories. The agreement with experiment for the resulting averaged spectra is at least as good as, and often better than, what is observed for Boltzmann-weighted spectra. As the weights are available before the costly step of spectrum calculation, the method has the additional advantage of enabling efficient approximations. For simulating the molecular dynamics of the studied α,β-linked thiophenes and 2-methylthiophenes, high quality parameters have been derived for the CHARMM force field. Furthermore, the temperature dependence of the IR and Raman spectra has been investigated, both experimentally and theoretically.
Platinum(II) and phosphine MM3 force field parameters are derived from fits to the ground state potential energy surface at the level of Kohn-Sham density functional theory with employment of the B3LYP exchange-correlation functional. The parametrization includes bond stretch, angle bend, and torsional parameters for a planar platinum(II) center with phosphine and ethynyl ligands. The force field is used to study the dynamics of a fifth-generation dendrimer-coated platinum(II)organic compound in tetrahydrofurane solution at room temperature, and, based on a selection of conformations from the molecular dynamics simulation, the averaged linear absorption spectrum is determined with use of the CAM-B3LYP functional. The main absorption peak in the theoretical absorption spectrum is found at a transition wavelength of 325 nm with a full-width at half-maximum of 26 nm due to conformational broadening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.