This Progress Report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices.
Mischaracterization of so lar cell power conversion efficiencies and widespread publication of inconsistent data in scientific journals th reate ns to undermine progress in orga nic and hybrid photovoltaics research.
The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.
Low‐cost hybrid solar cells have made tremendous steps forward during the past decade owing to the implementation of extremely thin inorganic coatings as absorber layers, typically in combination with organic hole transporters. Using only extremely thin films of these absorbers reduces the requirement of single crystalline high‐quality materials and paves the way for low‐cost solution processing compatible with roll‐to‐roll fabrication processes. To date, the most efficient absorber material, except for the recently introduced organic–inorganic lead halide perovskites, has been Sb2S3, which can be implemented in hybrid photovoltaics using a simple chemical bath deposition. Current high‐efficiency Sb2S3 devices utilize absorber coatings on nanostructured TiO2 electrodes in combination with polymeric hole transporters. This geometry has so far been the state of the art, even though flat junction devices would be conceptually simpler with the additional potential of higher open circuit voltages due to reduced charge carrier recombination. Besides, the role of the hole transporter is not completely clarified yet. In particular, additional photocurrent contribution from the polymers has not been directly shown, which points toward detrimental parasitic light absorption in the polymers. This study presents a fine‐tuned chemical bath deposition method that allows fabricating solution‐processed low‐cost flat junction Sb2S3 solar cells with the highest open circuit voltage reported so far for chemical bath devices and efficiencies exceeding 4%. Characterization of back‐illuminated solar cells in combination with transfer matrix‐based simulations further allows to address the issue of absorption losses in the hole transport material and outline a pathway toward more efficient future devices.
a b s t r a c tThe method of spray depositing PEDOT:PSS allows the fabrication of thin films with controlled thickness on polymer layers. PEDOT:PSS is used in inverted ITO/TiO 2 /P3HT:PCBM/PEDOT:PSS/Ag solar cells to optimize the work function of the hole collecting electrode. The interlayer is also found to protect the organic layer during metal top deposition and improve the contact between P3HT PCBM and the Ag electrode, which is confirmed using two different metal deposition techniques; thermal evaporation and sputtering. Cells with PEDOT:PSS show full V OC and efficiency immediately after fabrication, whereas devices without PEDOT:PSS exhibit low performance in the beginning and improve significantly during the first 10 days after production. Devices are long term stable if stored in the dark and in ambient air and show no significant performance decrease after 80 days. No inert nitrogen atmosphere is needed for any fabrication step, thus reducing the potential production costs since no glove box has to be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.