Iron, while attracting less attention than magnesium and zinc, is still one of the best candidates for biodegradable metal stents thanks its biocompatibility, great elastic moduli and high strength. Due to the low corrosion rate, and thus slow biodegradation, iron stents have still not been put into use. While these problems have still not been fully resolved, many studies have been published that propose different approaches to the issues. This brief overview report summarises the latest developments in the field of biodegradable iron-based stents and presents some techniques that can accelerate their biocorrosion rate. Basic data related to iron metabolism and its biocompatibility, the mechanism of the corrosion process, as well as a critical look at the rate of degradation of iron-based systems obtained by several different methods are included. All this illustrates as the title says, what was done within the topic of biodegradable iron-based materials and what more can be done.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.