The structural variability of two series of Mg2+- and Zn2+- 2-hydroxyphosphonoacetates have been studied in the range of 25–80°C and 95% relative humidity in order to correlate the structure with the proton conductivity properties. In addition to selected previously reported 1D, 2D and 3D materials, a new compound, KZn6(OOCCH(OH)PO3)4(OH)·5H2O (KZn6-HPAA-3D), has been prepared and thoroughly characterized. The crystal structure of this solid, solved ab initio from synchrotron X-ray powder diffraction data, consists of a negatively charged 3D framework with K+ ions, as compensating counterions. It also contains water molecules filling the cavities in contrast to the potassium-free 3D anhydrous NH4Zn(OOCCH(OH)PO3) (NH4Zn-HPAA-3D). In the range of temperature studied, the 1D materials exhibit a 1D→2D solid-state transition. At 80°C and 95% RH, the 2D solids show moderate proton conductivities, between 2.1×10−5 S·cm−1 and 6.7×10−5 S·cm−1. The proton conductivity is slightly increased by ammonia adsorption up to 2.6×10−4 S·cm−1, although no ammonia intercalation was observed. As synthesized KZn6-HPAA-3D exhibits a low proton conductivity, 1.6×10−6 S·cm−1, attributed to the basic character of the framework and a low mobility of water molecules. However, this solid transforms to the 2D phase, Zn(OOCCH(OH)PO3H)·2H2O, upon exposure to dry HCl(g), which enhances the proton conductivity with respect to the as-synthesized 2D material (4.5×10−4 S·cm−1). On the other hand, NH4Zn-HPAA-3D exhibited a higher proton conductivity, 1.4×10−4 S·cm−1, than the K+ analog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.