Given a positive function F defined on the unit Euclidean sphere and satisfying a suitable convexity condition, we consider, for hypersurfaces M n immersed in the Euclidean space R n+1 , the so-called k-th anisotropic mean curvatures H F k , 0 ≤ k ≤ n. For fixed 0 ≤ r ≤ s ≤ n, a hypersurface M n of R n+1 is said to be (r, s, F )-linear Weingarten when its k-th anisotropic mean curvatures H F k , r ≤ k ≤ s, are linearly related. In this setting, we establish the concept of stability concerning closed (r, s, F )-linear Weingarten hypersurfaces immersed in R n+1 and, afterwards, we prove that such a hypersurface is stable if, and only if, up to translations and homotheties, it is the Wulff shape of F . For r = s and F ≡ 1, our results amount to the standard stability studied, for instance, by Alencar-do Carmo-Rosenberg [1].
O uso de Dobraduras como recurso para o ensino da geometria plana: história, teoremas e problemas.Use of folding as a resource for the teaching of plane geometry: stories, theorems and problems.
Resumo
Este trabalho aborda o uso de Objetos de Aprendizagem (OAs) voltado para o ensino de Combinatória e como esses objetos podem auxiliar no processo de aprendizagem dos alunos. Nesse sentido, o objetivo desse trabalho é verificar se a utilização de OAs nas aulas de Matemática promovem uma melhor assimilação dos conteúdos relacionados à Combinatória, buscando despertar no aluno a curiosidade e a investigação nesta área. Por isso, optou
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.