International audienceMost Monte Carlo rendering algorithms rely on importance sampling to reduce the variance of estimates. Importance sampling is efficient when the proposal sample distribution is well-suited to the form of the integrand but fails otherwise. The main reason is that the sample location information is not exploited. All sample values are given the same importance regardless of their proximity to one another. Two samples falling in a similar location will have equal importance whereas they are likely to contain redundant information. The Bayesian approach we propose in this paper uses both the location and value of the data to infer an integral value based on a prior probabilistic model of the integrand. The Bayesian estimate depends only on the sample values and locations, and not how these samples have been chosen. We show how this theory can be applied to the final gathering problem and present results that clearly demonstrate the benefits of Bayesian Monte Carlo
Pixar’s RenderMan renderer is used to render all of Pixar’s films and by many film studios to render visual effects for live-action movies. RenderMan started as a scanline renderer based on the Reyes algorithm, and it was extended over the years with ray tracing and several global illumination algorithms. This article describes the modern version of RenderMan, a new architecture for an extensible and programmable path tracer with many features that are essential to handle the fiercely complex scenes in movie production. Users can write their own materials using a bxdf interface and their own light transport algorithms using an integrator interface—or they can use the materials and light transport algorithms provided with RenderMan. Complex geometry and textures are handled with efficient multi-resolution representations, with resolution chosen using path differentials. We trace rays and shade ray hit points in medium-sized groups, which provides the benefits of SIMD execution without excessive memory overhead or data streaming. The path-tracing architecture handles surface, subsurface, and volume scattering. We show examples of the use of path tracing, bidirectional path tracing, VCM, and UPBP light transport algorithms. We also describe our progressive rendering for interactive use and our adaptation of denoising techniques.
With interest in high-dynamic-range imaging mounting, techniques for displaying such images on conventional display devices are gaining in importance. Conversely, high-dynamic-range display hardware is creating the need for display algorithms that prepare images for such displays. In this paper, the current state of the art in dynamic-range reduction and expansion is reviewed, and in particular the theoretical and practical need to structure tone reproduction as a combination of a forward and a reverse pass is passed.Journal of the SID 15/12, 2007 997 FIGURE 5 -Tone-mapping function created by reshaping the cumulative histogram of the image shown in Fig. 6. FIGURE 6 -Image tone-mapped using histogram adjustment. Journal of the SID 15/12, 2007 1001 I K J J J J J J
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.