The bridge between engineering design and cognitive science research is critical to understand the effectiveness of design methods as implemented by human designers. The study reported in this paper evaluates the effects of design fixation in a group of engineering design faculty, and also provides evidence for approaches to overcome design fixation. Three conditions are compared, a control, a fixation group whom were provided with an example solution, and a defixation group whom were also given materials to mitigate their design fixation. Measures include indicators of design fixation and participant perceptions. The study demonstrates that the engineering design faculty show statistically significant evidence of design fixation, but only partially perceive its effects. This study also indicates that design fixation can be mitigated. The group of participants in this study, due to their background in engineering design research and experience with student design teams, was expected to have more accurate perceptions or awareness of design fixation than the typical participant. Understanding the incongruities between participant perceptions and quantitative design outcomes are particularly of interest to researchers of design methods. For this study, clear evidence exists that designers, even those that study and teach design on a regular basis, do not know when they are being influenced or fixated by misleading or poor information.
Drawing inspiration from examples by analogy can be a powerful tool for innovative design during conceptual ideation but also carries the risk of negative design outcomes (e.g., design fixation), depending on key properties of examples. Understanding these properties is critical for effectively harnessing the power of analogy. The current research explores how variations in analogical distance, commonness, and representation modality influence the effects of examples on conceptual ideation. Senior-level engineering students generated solution concepts for an engineering design problem with or without provided examples drawn from the U.S. Patent database. Examples were crossed by analogical distance (near-field vs. far-field), commonness (more vs. less-common), and modality (picture vs. text). A control group that received no examples was included for comparison. Effects were examined on a mixture of ideation process and product variables. Our results show positive effects of far-field and less-common examples on novelty and variability in quality of solution concepts. These effects are not modulated by modality. However, detailed analyses of process variables suggest divergent inspiration pathways for far-field vs. less-common examples. Additionally, the combination of far-field, less-common examples resulted in more novel concepts than in the control group. These findings suggest guidelines for the effective design and implementation of design-by-analogy methods, particularly a focus on far-field, less-common examples during the ideation process.
This work lends insight into the meaning and impact of "near" and "far" analogies. A cognitive engineering design study is presented that examines the effect of the distance of analogical design stimuli on design solution generation, and places those findings in context of results from the literature. The work ultimately sheds new light on the impact of analogies in the design process and the significance of their distance from a design problem. In this work, the design repository from which analogical stimuli are chosen is the U.S. patent database, a natural choice, as it is one of the largest and easily accessed catalogued databases of inventions. The "near" and "far" analogical stimuli for this study were chosen based on a structure of patents, created using a combination of Latent Semantic Analysis and a Bayesian based algorithm for discovering structural form, resulting in clusters of patents connected by their relative similarity. The findings of this engineering design study are contextualized with the findings of recent work in design by analogy, by mapping the analogical stimuli used in the earlier work into similar structures along with the patents used in the current study. Doing so allows the discovery of a relationship between all of the stimuli and their relative distance from the design problem. The results confirm that "near" and "far" are relative terms, and depend on the characteristics of the potential stimuli. Further, although the literature has shown that "far" analogical stimuli are more likely to lead to the generation innovative solutions with novel characteristics, there is such a thing as too far. That is, if the stimuli are too distant, they then can become harmful to the design process. Importantly, as well, the data mapping approach to identify analogies works, and is able to impact the effectiveness of the design process. This work has implications not only in the area of finding inspirational designs to use for design by analogy processes in practice, but also for synthesis, or perhaps even unification, of future studies in the field of design by analogy.
One of the hallmarks of engineering design is the design synthesis phase where the creativity of the designer most prominently comes into play as solutions are generated to meet underlying needs. Over the past decades, methodologies for generating concepts and design solutions have matured to the point that computation-based synthesis provides a means to explore a wider variety of solutions and take over more tedious design tasks. This paper reviews advances in function-based, grammar-based, and analogy-based synthesis approaches and their contributions to computational design synthesis research in the last decade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.