The electronic structure of self-assembled monolayers (SAMs) formed by thiols of different lengths and dithiol molecules bound to Au(111) has been characterized. Inverse photoemission spectroscopy (IPES) and density functional theory have been used to describe the molecule/Au substrate system. All molecular layers display a clear signal in the IPES data at the edge of the lowest unoccupied system orbital (LUSO), roughly 3 eV above the Fermi level. There is also evidence, in both the experimental data and the calculation, of a finite density of states just below the LUSO edge, which has been recognized as localized at the Au-substrate interface. Regardless of the molecular lengths and in addition to this induced density of interface states, an apparent antibonding Au-S state has been identified in the IPES data for both molecular systems. The main difference between the electronic structures of thiol and dithiol SAMs is a shift in the energy of the antibonding state.
To increase efficiencies of bifacial solar cells, emitter, back surface field (BSF), and metal patterns must be optimized. We study the influence of paste volume, through multiple prints, of two silver pastes on the contact formation at the rear side of n‐type passivated emitter and rear totally diffused (n‐PERT) solar cells with two BSF doping profiles. Differences in fingers' electrical properties were found between pastes. Contact resistivity shows a relative difference of 27.6%, partially explained by changes in the silver crystallites formation at the Ag/Si interface and in the crystallites' penetration depth. Variations in crystallites formation and penetration between pastes can reach 38.4% and 48.8%, respectively. Line resistance shows a difference between pastes, appearing as the main cause of an absolute efficiency difference of 2.9%. Fingers' structural and electrical properties are modified by increasing the paste volume. Microstructure analysis reveals that additional metallic printing does not only increase line cross sectional area but also increases the formation of silver crystallites, which can reach a relative increment of 23.9% between first and second prints. Further printing does not necessarily decrease contact resistivity, but reduces line resistance in up to 94.9%, which results in an absolute efficiency increase of 2.2%. In addition, the higher presence of silver oxide in the finger is related to a higher efficiency in the formation of silver crystallites. Finally, BSF doping has an influence in the open circuit voltage, short circuit current density, and contact resistivity, with differences that can reach 8.7 mV, 0.2 mA/cm2, and 6.1 mΩcm2, respectively, depending on paste and number of prints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.