Abstract. New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 µm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (d eff ) from 2.3 to 19.4 µm and coarse mode volume median diameter (d vc ) from 5.8 to 45.3 µm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with d eff > 12 µm, or d vc > 25 µm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration.Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to d eff . New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when d eff is greater than 2 µm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation, which should be taken into account by numerical weather prediction and climate models.
Abstract. Measurements of aerosol properties were made in aged polluted and clean background air masses encountered at the North Norfolk (UK) coastline as part of the TORCH2 field campaign in May 2004. Hygroscopic growth factors (GF) at 90% relative humidity (RH) for D 0 =27-217 nm particles and size-resolved chemical composition were simultaneously measured using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) and an Aerodyne aerosol mass spectrometer (Q-AMS), respectively. Both hygroscopic properties and chemical composition showed pronounced variability in time and with particles size. With this data set we could demonstrate that the Zdanovskii-Stokes-Robinson (ZSR) mixing rule combined with chemical composition data from the AMS makes accurate quantitative predictions of the mean GF of mixed atmospheric aerosol particles possible. In doing so it is crucial that chemical composition data are acquired with high resolution in both particle size and time, at least matching the actual variability of particle properties. The closure results indicate an ensemble GF of the organic fraction of ∼1.20±0.10 at 90% water activity. Thus the organics contribute somewhat to hygroscopic growth, particularly at small sizes, however the inorganic salts still dominate.Furthermore it has been found that most likely substantial evaporation losses of NH 4 NO 3 occurred within the HTDMA instrument, exacerbated by a long residence time of ∼1 min. Such an artefact is in agreement with our laboratory experiments and literature data for pure NH 4 NO 3 , both showing similar evaporation losses within HTDMAs with residence times of ∼1 min. Short residence times and low temperatures are hence recommended for HTDMAs in order to minimise such evaporation artefacts.
Mixed-phase clouds represent a three-phase colloidal system consisting of water vapor, ice particles, and coexisting supercooled liquid droplets. Mixed-phase clouds are ubiquitous in the troposphere, occurring at all latitudes from the polar regions to the tropics. Because of their widespread nature, mixed-phase processes play critical roles in the life cycle of clouds, precipitation formation, cloud electrification, and the radiative energy balance on both regional and global scales. Yet, in spite of many decades of observations and theoretical studies, our knowledge and understanding of mixed-phase cloud processes remains incomplete. Mixed-phase clouds are notoriously difficult to represent in numerical weather prediction and climate models, and their description in theoretical cloud physics still presents complicated challenges. In this chapter, the current status of our knowledge on mixed-phase clouds, obtained from theoretical studies and observations, is reviewed. Recent progress, along with a discussion of problems and gaps in understanding the mixed-phase environment is summarized. Specific steps to improve our knowledge of mixed-phase clouds and their role in the climate and weather system are proposed.
Measured ice crystal concentrations in natural clouds at modest supercooling (temperature ;.2108C) are often orders of magnitude greater than the number concentration of primary ice nucleating particles. Therefore, it has long been proposed that a secondary ice production process must exist that is able to rapidly enhance the number concentration of the ice population following initial primary ice nucleation events. Secondary ice production is important for the prediction of ice crystal concentration and the subsequent evolution of some types of clouds, but the physical basis of the process is not understood and the production rates are not well constrained. In November 2015 an international workshop was held to discuss the current state of the science and future work to constrain and improve our understanding of secondary ice production processes. Examples and recommendations for in situ observations, remote sensing, laboratory investigations, and modeling approaches are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.