Marine mussels secret catechol-containing adhesive proteins that enable these organisms to bind to various surfaces underwater. Synthetic mimics of these proteins have been created to function as adhesives and coatings for a wide range of applications. Here, we demonstrated the use of in situ electrical field stimulation to deactivate the adhesive property of catechol-containing adhesive that is in direct contact with a surface. Johnson–Kendall–Roberts (JKR) contact mechanics test was performed using a titanium (Ti) sphere in the presence of a pH 7.5 aqueous buffer. The Ti sphere also served as a conductive electrode for applying electricity to the adhesive, while a platinum (Pt) wire served as the counter electrode. Work of adhesion (W adh) decreased with increased levels of applied voltage and current, exposure time to the applied electricity, and salt concentration of the interfacial buffer. Application of 9 V for 1 min completely deactivated the adhesive. UV–vis diffuse reflectance spectra and tracking of catechol oxidation byproduct, hydrogen peroxide, confirmed that catechol was oxidized as a result of applied electricity. Contact mechanics testing further confirmed that the Young’s modulus of the adhesive increased by nearly 4 folds at the interface as a result of oxidative cross-linking, even though the modulus of the bulk of the adhesive was unaffected by applied electricity. The accumulation of hydroxyl ions near the cathode increased the local solution pH, which promoted oxidation-induced cross-linking of catechol and subsequently decreased its adhesive property. Tuning adhesive properties through in situ electrochemical oxidation provides on-demand control over the adhesive, which will potentially add another dimension in designing synthetic mimics of mussel adhesive proteins.
Microgels that can generate antipathogenic levels of hydrogen peroxide (H2O2) through simple rehydration in solutions with physiological pH are described herein. H2O2 is a widely used disinfectant but the oxidant is hazardous to store and transport. Catechol, an adhesive moiety found in mussel adhesive proteins, was incorporated into microgels, which generated 1–5 mM of H2O2 for up to four days as catechol autoxidized. The sustained release of low concentrations of H2O2 was antimicrobial against both gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria and antiviral against both non-enveloped porcine parvovirus (PPV) and enveloped bovine viral diarrhea virus (BVDV). The amount of released H2O2 is several orders of magnitude lower than H2O2 concentration previously reported for antipathogenic activity. Most notably, these microgels reduced the invectively of the more biocide resistant non-envelope virus by 3 log reduction value (99.9% reduction in infectivity). By controlling the oxidation state of catechol, microgels can be repeatedly activated and deactivated for H2O2 generation. These microgels do not contain a reservoir for storing the reactive H2O2 and can potentially function as a lightweight and portable dried powder source for the disinfectant for a wide range of applications.
Adhesive hydrogels were prepared by copolymerizing dopamine methacrylamide with either acrylic acid (AAc) or N-(3-aminopropyl)methacrylamide hydrochloride (APMH). The effect of incorporating the anionic and cationic side chains on the oxidation state of catechol was characterized using the FOX assay to track the production of hydrogen peroxide byproduct generated during the autoxidation of catechol, and the interfacial binding property of the adhesive was determined by performing Johnson-Kendall-Roberts contact mechanics tests tested over a wide range of pH values (pH 3.0-9.0). The ionic species contributed to interfacial binding to surfaces with the opposite charge with measured work of adhesion values that were comparable to or in some cases higher than those of catechol. Addition of AAc minimized the oxidation of catechol even at a pH of 8.5 and correspondingly preserved the elevated adhesive property of catechol to both quartz and amine-functionalized surfaces. However, AAc lost its buffering capacity at pH 9.0, and catechol was oxidized at this pH. On the other hand, catechol formed a cohesive covalent bond with the network-bound amine side chain of APMH at basic pH, which interfered with the interfacial binding capability of APMH and the catechol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.