This review presents insights into the fundamental challenges of wet adhesion, and the applications of catechol-functionalized hydrogels in diverse areas.
Currently available biomedical adhesives are mainly engineered to have one function (i.e., providing mechanical support for the repaired tissue). To improve the performance of existing bioadhesives and broaden their applications in medicine, numerous multifunctional bioadhesives are reported in the literature. These adhesives can be categorized as passive or active by design. Passive multifunctional bioadhesives contain inherent compositions and structural designs that can carry out additional functions without added external influences. These adhesives exhibit new functionalities such as antimicrobial properties, self‐healing abilities, the ability to promote cellular ingrowth, and the ability to be reshaped. Conversely, active multifunctional bioadhesives respond to environmental changes (e.g., pH, temperature, electricity, light, and biomolecule concentration), which initiate a change in the adhesive to release encapsulated drugs or to activate or deactivate the bioadhesive for interfacial binding. This review article highlights recent advances in multifunctional bioadhesives.
Microgels that can generate antipathogenic levels of hydrogen peroxide (H2O2) through simple rehydration in solutions with physiological pH are described herein. H2O2 is a widely used disinfectant but the oxidant is hazardous to store and transport. Catechol, an adhesive moiety found in mussel adhesive proteins, was incorporated into microgels, which generated 1–5 mM of H2O2 for up to four days as catechol autoxidized. The sustained release of low concentrations of H2O2 was antimicrobial against both gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria and antiviral against both non-enveloped porcine parvovirus (PPV) and enveloped bovine viral diarrhea virus (BVDV). The amount of released H2O2 is several orders of magnitude lower than H2O2 concentration previously reported for antipathogenic activity. Most notably, these microgels reduced the invectively of the more biocide resistant non-envelope virus by 3 log reduction value (99.9% reduction in infectivity). By controlling the oxidation state of catechol, microgels can be repeatedly activated and deactivated for H2O2 generation. These microgels do not contain a reservoir for storing the reactive H2O2 and can potentially function as a lightweight and portable dried powder source for the disinfectant for a wide range of applications.
A composite adhesive capable of inducing cellular infiltration was prepared by incorporating control clustered silica microparticle (MP) derived from the aggregation of silica nanoparticle (NP) into a catechol-terminated poly(ethylene glycol) bioadhesive (PEG-DA). Incorporation of MP into PEG-DA significantly improved the mechanical and adhesive properties of the bioadhesive. There was no statistical difference between the measured values for NP- and MP-incorporated adhesives, indicating that MP was equally as effective in enhancing the material properties of PEG-DA as NP. Most importantly, MP was significantly less cytotoxic when compared to NP when these particles were directly exposed to L929 fibroblast. When the adhesives were implanted subcutaneously in rats, MP-containing PEG-DA also exhibited reduced inflammatory responses, attracted elevated levels of regenerative M2 macrophage to its interface, and promoted cellular infiltration due to increased porosity within the adhesive network. Control clustered silica MP can be used to improve the performance and biocompatibility of PEG-based adhesive while minimizing undesirable cytotoxicity of silica NP.
Adhesive hydrogels were prepared by copolymerizing dopamine methacrylamide with either acrylic acid (AAc) or N-(3-aminopropyl)methacrylamide hydrochloride (APMH). The effect of incorporating the anionic and cationic side chains on the oxidation state of catechol was characterized using the FOX assay to track the production of hydrogen peroxide byproduct generated during the autoxidation of catechol, and the interfacial binding property of the adhesive was determined by performing Johnson-Kendall-Roberts contact mechanics tests tested over a wide range of pH values (pH 3.0-9.0). The ionic species contributed to interfacial binding to surfaces with the opposite charge with measured work of adhesion values that were comparable to or in some cases higher than those of catechol. Addition of AAc minimized the oxidation of catechol even at a pH of 8.5 and correspondingly preserved the elevated adhesive property of catechol to both quartz and amine-functionalized surfaces. However, AAc lost its buffering capacity at pH 9.0, and catechol was oxidized at this pH. On the other hand, catechol formed a cohesive covalent bond with the network-bound amine side chain of APMH at basic pH, which interfered with the interfacial binding capability of APMH and the catechol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.