Aims/hypothesis: C57BL/6J mice exhibit impaired glucose tolerance. The aims of this study were to map the genetic loci underlying this phenotype, to further characterise the physiological defects and to identify candidate genes. Methods: Glucose tolerance was measured in an intraperitoneal glucose tolerance test and genetic determinants mapped in an F2 intercross. Insulin sensitivity was measured by injecting insulin and following glucose disposal from the plasma. To measure beta cell function, insulin secretion and electrophysiological studies were carried out on isolated islets. Candidate genes were investigated by sequencing and quantitative RNA analysis. Results: C57BL/6J mice showed normal insulin sensitivity and impaired insulin secretion. In beta cells, glucose did not stimulate a rise in intracellular calcium and its ability to close K ATP channels was impaired. We identified three genetic loci responsible for the impaired glucose tolerance. Nicotinamide nucleotide transhydrogenase (Nnt) lies within one locus and is a nuclear-encoded mitochondrial proton pump. Expression of Nnt is more than sevenfold and fivefold lower respectively in C57BL/6J liver and islets. There is a missense mutation in exon 1 and a multi-exon deletion in the C57BL/6J gene. Glucokinase lies within the Gluchos2 locus and shows reduced enzyme activity in liver. Conclusions/interpretation: The C57BL/6J mouse strain exhibits plasma glucose intolerance reminiscent of human type 2 diabetes. Our data suggest a defect in beta cell glucose metabolism that results in reduced electrical activity and insulin secretion. We have identified three loci that are responsible for the inherited impaired plasma glucose tolerance and identified a novel candidate gene for contribution to glucose intolerance through reduced beta cell activity.
Inwardly rectifying potassium channels (Kir channels) control cell membrane K ؉ fluxes and electrical signaling in diverse cell types. Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive (KATP) channel, cause permanent neonatal diabetes mellitus (PNDM). For some mutations, PNDM is accompanied by marked developmental delay, muscle weakness, and epilepsy (severe disease). To determine the molecular basis of these different phenotypes, we expressed wild-type or mutant (R201C, Q52R, or V59G) Kir6.2͞sulfonylurea receptor 1 channels in Xenopus oocytes. All mutations increased resting whole-cell K ATP currents by reducing channel inhibition by ATP, but, in the simulated heterozygous state, mutations causing PNDM alone (R201C) produced smaller K ATP currents and less change in ATP sensitivity than mutations associated with severe disease (Q52R and V59G). This finding suggests that increased KATP currents hyperpolarize pancreatic beta cells and impair insulin secretion, whereas larger KATP currents are required to influence extrapancreatic cell function. We found that mutations causing PNDM alone impair ATP sensitivity directly (at the binding site), whereas those associated with severe disease act indirectly by biasing the channel conformation toward the open state. The effect of the mutation on ATP sensitivity in the heterozygous state reflects the different contributions of a single subunit in the Kir6.2 tetramer to ATP inhibition and to the energy of the open state. Our results also show that mutations in the slide helix of Kir6.2 (V59G) influence the channel kinetics, providing evidence that this domain is involved in Kir channel gating, and suggest that the efficacy of sulfonylurea therapy in PNDM may vary with genotype. potassium channel ͉ KATP channel ͉ KCNJ11 ͉ ATP-binding site
We report that ANO1 (also known as TMEM16A) Ca 2+ -activated Cl − channels in small neurons from dorsal root ganglia are preferentially activated by particular pools of intracellular Ca 2+ . These ANO1 channels can be selectively activated by the G protein-coupled receptor (GPCR)-induced release of Ca 2+ from intracellular stores, but not by Ca 2+ influx through voltage-gated Ca 2+ channels. This ability to discriminate between Ca 2+ pools was achieved by the tethering of ANO1-containing plasma membrane domains, which also contained GPCRs such as bradykinin receptor-2 and protease-activated receptor-2, to juxtamembrane regions of the endoplasmic reticulum. Interaction of the C-terminus and the first intracellular loop of ANO1 with IP 3 R1 (inositol 1,4,5-trisphosphate receptor 1) contributed to the tethering. Disruption of membrane microdomains blocked the ANO1 and IP 3 R1 interaction and resulted in the loss of coupling between GPCR signaling and ANO1. The junctional signaling complex enabled ANO1-mediated excitation in response to specific Ca 2+ signals rather than to global changes in intracellular Ca 2+ .
Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications.DOI: http://dx.doi.org/10.7554/eLife.24903.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.