The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p < 0.01) in cells per scaffold mass vs. AD constructs. Collagen was ∼31% greater (p < 0.01) on FDAD compared to AD scaffolds not evident in microscopy of microsphere surfaces. Alternatively, AD scaffolds demonstrated a superior threefold increase in compressive strength over FDAD (12 vs. 4 MPa) with minimal degradation. Inclusion of FD spheres within the FDAD scaffolds allowed increased cellular activity through improved seeding, proliferation, and extracellular matrix production (as collagen), although mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.
Underlying changes in subchondral and cancellous bone precede joint degeneration in spinal discs, knees, hips, and other joints. We hypothesize that an early bone remodeling intervention therapy may alleviate or postpone the later manifestation of joint failure. Utilization of a novel biomaterial for injection deliverability to the underlying subchondral and cancellous bone during the onset of osseous changes, before severe cartilaginous damage, is proposed. In this preliminary study, we introduced novel platelet releasate-containing alginate/calcium phosphate composites for this intervention therapy and evaluated them in vitro through mesenchymal stem cell biocompatibility and induction of osteochondral differentiation. DNA quantification and gene expression profiles suggested mesenchymal stem cells were directed along an osteochondral differentiation pathway, more specifically, to the immature nonhypertrophic chondrocyte phenotype. These conclusions were based on reduced mitogenic activity, a rapid upregulation followed by suppression of Runx2 transcription factor mRNA, sustained upregulation of Sox9 transcription factor mRNA and the absence of late marker expressions for both mature articular chondrocytes and osteoblasts over the course of 14 days. Initial findings in regard to the use of these materials for bone remodeling were positive and support the execution of future studies evaluating the inflammatory and angiogenic aspects of the materials. In this study, we have considered one of the many aspects of the endochondral ossification process; neovascularization and resorption of bone with an irregular physiology need to be evaluated.
A clinical need continues for consistent bone remodeling within problematic sites such as those of fracture nonunion, avascular necrosis, or irregular bone formations. In attempt to address such needs, a biomaterial system is proposed to induce early inflammatory responses after implantation and to provide later osteoconductive scaffolding for bone regeneration. Biomaterial-induced inflammation would parallel the early stage of hematoma-induced fracture repair and allow scaffold-promoted remodeling of osseous tissue to a healthy state. Initiation of the wound healing cascade by two human concentrated platelet releasate-containing alginate/β-tricalcium phosphate biocomposites has been studied in vitro using the TIB-71™ RAW264.7 mouse monocyte cell line. Inflammatory responses inherent to the base material were found and could be modulated through incorporation of platelet releasate. Differences in hydrogel wt% (2 vs. 8 %) and/or calcium phosphate granule vol.% (20 vs. 10 %) allowed for tuning the response associated with platelet releasate-associated growth factor elution. Tunability from completely suppressing the inflammatory response to augmenting the response was observed through varied elution profiles of both releasate-derived bioagents and impurities inherent to alginate. A 2.5-fold upregulation of inducible-nitric oxide synthase gene expression followed by a tenfold increase in nitrite media levels was induced by inclusion of releasate within the 8 wt%/10 vol.% formulation and was comparable to an endotoxin positive control. Whereas, near complete elimination of inflammation was seen when releasate was included within the 2 wt%/20 vol.% formulation. These in vitro results suggested tunable interactions between the multiple platelet releasate-derived bioagents and the biocomposites for enhancing hematoma-like fracture repair. Additionally, minimally invasive delivery for in situ curing of the implant system via injection was demonstrated in rat tail vertebrae using microcomputed tomography.
Using this in vitro model, B2A induced proliferation, continuous aggrecan synthesis, and stabilized collagen accumulation favoring Col II. These characteristics are consistent with cells of the young, healthy NP, indicating potential use of the peptide early in an MSC-based NP-regeneration therapy; whereas, BMP-2 induced apoptosis, Col I accumulation, and aggrecan production hindrance, and was found untherapeutic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.