Strong gravitational lensing, which can make a background source galaxy appears multiple times due to its light rays being deflected by the mass of one or more foreground lens galaxies, provides astronomers with a powerful tool to study dark matter, cosmology and the most distant Universe. PyAutoLens is an open-source Python 3.6+ package for strong gravitational lensing, with core features including fully automated strong lens modeling of galaxies and galaxy clusters, support for direct imaging and interferometer datasets and comprehensive tools for simulating samples of strong lenses. The API allows users to perform ray-tracing by using analytic light and mass profiles to build strong lens systems. Accompanying PyAutoLens is the autolens workspace, which includes example scripts, lens datasets and the HowToLens lectures in Jupyter notebook format which introduce non-experts to strong lensing using PyAutoLens. Readers can try PyAutoLens right now by going to the introduction Jupyter notebook on Binder or checkout the readthedocs for a complete overview of PyAutoLens's features.
We analyse JUNE: a detailed model of Covid-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the Uncertainty Quantification approaches of Bayes linear emulation and history matching, to mimic the JUNE model and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data.
We analyze JUNE : a detailed model of COVID-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the uncertainty quantification approaches of Bayes linear emulation and history matching to mimic JUNE and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods. This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’.
Computed tomography (CT) is an effective medical imaging modality, widely used in the field of clinical medicine for the diagnosis of various pathologies. Advances in Multidetector CT imaging technology have enabled additional functionalities, including generation of thin slice multiplanar cross-sectional body imaging and 3D reconstructions. However, this involves patients being exposed to a considerable dose of ionising radiation. Excessive ionising radiation can lead to deterministic and harmful effects on the body. This paper proposes a Deep Learning model that learns to reconstruct CT projections from a few or even a single-view X-ray. This is based on a novel architecture that builds from neural radiance fields, which learns a continuous representation of CT scans by disentangling the shape and volumetric depth of surface and internal anatomical structures from 2D images. Our model is trained on chest and knee datasets, and we demonstrate qualitative and quantitative high-fidelity renderings and compare our approach to other recent radiance field-based methods. Our code and link to our datasets are available at https: //github.com/abrilcf/mednerf Clinical relevance-Our model is able to infer the anatomical 3D structure from a few or a single-view X-ray, showing future potential for reduced ionising radiation exposure during the imaging process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.