Wireless control and power harvesting systems that operate injectable, cellular-scale optoelectronic components provide important demonstrated capabilities in neuromodulatory techniques such as optogenetics. Here we report a radio frequency (RF) control/harvesting device that offers dramatically reduced size, decreased weight and improved efficiency compared to previously reported technologies. Combined use of this platform with ultrathin, multijunction, high efficiency solar cells allows for hundred-fold reduction of transmitted RF power, which greatly enhances the wireless coverage. Optogenetics studies with social groups of mice demonstrate the utility of these systems, and suggest their potential for widespread use in neuroscience.
One third of U.S. adults report short sleep (<7 h), which has been linked to negative health outcomes. Inadequate intake of micronutrients across the U.S. adult population has been reported, and a relationship between sleep conditions and micronutrient intake is emerging. This cross-sectional analysis of the National Health and Nutrition Examination Survey (NHANES 2005–2016) (n = 26,211) showed that participants with short sleep duration had a lower usual intake (Food + Supplements) of calcium, magnesium, and vitamin D in all adults aged 19+ years, and vitamin K in adults aged 19–50 years, even after adjusting for covariates. In addition, participants reporting short sleep had a higher percentage of individuals with intake lower than the estimated average requirement (EAR) across multiple nutrients. Age and gender differences were observed in the prevalence of inadequate intake across multiple nutrients. Adults aged 51–99 years with short sleep duration had inadequate intake with respect to more nutrients. In females there was an association between short sleep and a higher prevalence of inadequate intake (Food + Spp) for calcium, magnesium, and vitamins A, C, D, E, and K (above adequate intake). Conversely, males reporting short sleep only had an inadequate intake of vitamin D. Overall, we demonstrate that short sleep is associated with increased nutrient inadequacy, emphasizing the possible need for dietary supplementation.
The aim of this review is to highlight current insights into the roles of choline and docosahexaenoic acid (DHA) in maternal and infant nutrition, with special emphasis on dietary recommendations, gaps in dietary intake, and synergistic implications of both nutrients in infant brain and eye development. Adequate choline and DHA intakes are not being met by the vast majority of US adults, and even more so by women of child-bearing age. Choline and DHA play a significant role in infant brain and eye development, with inadequate intakes leading to visual and neurocognitive deficits. Emerging findings illustrate synergistic interactions between choline and DHA, indicating that insufficient intakes of one or both could have lifelong deleterious impacts on both maternal and infant health.
Recent evidence suggests that fructose consumption is associated with weight gain, fat deposition and impaired cognitive function. However it is unclear whether the detrimental effects are caused by fructose itself or by the concurrent increase in overall energy intake. In the present study we examine the impact of a fructose diet relative to an isocaloric glucose diet in the absence of overfeeding, using a mouse model that mimics fructose intake in the top percentile of the USA population (18% energy). Following 77 days of supplementation, changes in body weight (BW), body fat, physical activity, cognitive performance and adult hippocampal neurogenesis were assessed. Despite the fact that no differences in calorie intake were observed between groups, the fructose animals displayed significantly increased BW, liver mass and fat mass in comparison to the glucose group. This was further accompanied by a significant reduction in physical activity in the fructose animals. Conversely, no differences were detected in hippocampal neurogenesis and cognitive/motor performance as measured by object recognition, fear conditioning and rotorod tasks. The present study suggests that fructose per se, in the absence of excess energy intake, increases fat deposition and BW potentially by reducing physical activity, without impacting hippocampal neurogenesis or cognitive function.
Absorption, distribution and elimination of 14C-labelled isoflavone-containing extracts from kudzu (Pueraria lobata) root culture and red clover (Trifolium pratense) cell culture were investigated in an in vivo rat model. The predominant isoflavones in the kudzu extract were the glycosides puerarin, daidzin and malonyl daidzin, while in the red clover extract, the major isoflavones were formononetin and its derivatives, genistein and biochanin A, with radioactivities of 3.770 and 7.256 MBq/g, respectively. Male Sprague-Dawley rats, implanted with a jugular catheter and a subcutaneous ultrafiltrate probe, were orally administered with 14C-labelled isoflavone extracts from either kudzu or clover cell cultures. Serum, interstitial fluid (ISF), urine and faeces were collected using a Culex Automated Blood Collection System for 24 h. Analysis of bone tissues revealed that radiolabel accumulated in the femur, tibia and vertebrae at 0.04, 0.03 and 0.01 % of the administered dose, respectively, in both kudzu and red clover treatments. The liver accumulated the greatest concentration of radiolabel among the tissues tested, at 1.99 and 1.54 % of the administered kudzu and red clover extracts, respectively. Serum and ISF analysis showed that both extracts were rapidly absorbed, distributed in various tissues, and largely eliminated in the urine and faeces. Urine and faeces contained 8.53 and 9.06 % of the kudzu dose, respectively, and 3.60 and 5.64 % of the red clover dose, respectively. Serum pharmacokinetics suggest that extracts from kudzu may undergo enterohepatic circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.