The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.
The identification of general principles relating structure to dynamics has been a major goal in the study of complex networks. We propose that the special case of linear network dynamics provides a natural framework within which a number of interesting yet tractable problems can be defined. We report the emergence of modularity and hierarchical organization in evolved networks supporting asymptotically stable linear dynamics. Numerical experiments demonstrate that linear stability benefits from the presence of a hierarchy of modules and that this architecture improves the robustness of network stability to random perturbations in network structure. This work illustrates an approach to network science which is simultaneously structural and dynamical in nature.
We report experiments on spatially forced inclined layer convection, where the combined effect of the intrinsic symmetry breaking due to a gravity-induced shear flow and spatially periodic 1D forcing is studied. We observed pattern selection processes resulting in stabilization of spatiotemporal chaos and the emergence of novel two-dimensional states. Phase diagrams depicting the different observed states for typical forcing scenarios are presented. Convection in the weakly nonlinear regime is compared with theory, and a good agreement is found
We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions. © 2014 AIP Publishing LLC.[http://dx
While topological defects are essential to our understanding of self-organizing periodic systems, little is known about how these systems respond when their defects are subjected to geometrical constraints. In an experiment on spatially modulated thermal convection patterns, we observe that applied geometrical constraints bind topological defects into robust self-localized structures that evolve through aggregation, annihilation, and self-replication. We demonstrate that this unexpected cooperative response to the modulation is a natural consequence of three generic elements: phase locking, symmetry breaking, and spatial resonance. Our work provides new insights into the interplay between order, chaos, and control in self-organizing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.