A simple system, based on a vector network analyzer, has been used with new numerical de-embedding and parameter inversion techniques to determine the relative permittivity (dielectric properties) of materials within the frequency range 750-1100 GHz. Free-space (noncontact), nondestructive testing has been performed on various planar dielectric and semiconducting samples. This system topology is well suited for quality control testing in an industrial setting requiring high throughput. Scattering parameters, measured in the absence of a sample, were used to computationally move the measurement plane to the surface of the samples being characterized. This de-embedding process can be completed much faster than a traditional calibration process and does not require exact knowledge of system geometric lengths. An iterative method was developed for simultaneously determining both sample geometric thickness and electric permittivity, through calculation of theoretical scattering parameters at material boundaries. A constrained nonlinear optimization process was employed to minimize the discrepancy between measured transmission and reflection data with this simulated data, in lieu of a closed-form parameter inversion algorithm. Monte Carlo simulations of parameter retrieval in the presence of artificial noise have demonstrated our method's robustness and superior noise rejection compared with a noniterative method. The precision of derived results has been improved by a factor of almost 50, compared to a closed-form extraction technique with identical input.
Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract-Titanium dioxide (TiO 2 ) powder has been blended with polydimethylsiloxane (PDMS) to manufacture a composite polymer with variable permittivity. Vector network analyser measurements taken between 0.75-1.1 THz quantify the relationship between TiO 2 concentration and complex permittivity of the resultant material. Complex 3D structures have been produced with a casting process. Applications for the tunable-permittivity polymer include dielectric regions in photonic and plasmonic devices operating at terahertz frequencies as well as single pixel imaging systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.