BackgroundLeft atrial (LA) dilation provides a substrate for mitral regurgitation (MR) and atrial arrhythmias. ECG can screen for LA dilation but standard approaches do not assess LA geometry as a continuum, as does non-invasive imaging. This study tested ECG-quantified P wave area as an index of LA geometry.Methods and Results342 patients with CAD underwent ECG and CMR within 7 (0.1±1.4) days. LA area on CMR correlated best with P wave area in ECG lead V1 (r = 0.42, p<0.001), with lesser correlations for P wave amplitude and duration. P wave area increased stepwise in relation to CMR-evidenced MR severity (p<0.001), with similar results for MR on echocardiography (performed in 86% of patients). Pulmonary arterial (PA) pressure on echo was increased by 50% among patients in the highest (45±14 mmHg) vs. the lowest (31±9 mmHg) P wave area quartile of the population. In multivariate regression, CMR and echo-specific models demonstrated P wave area to be independently associated with LA size after controlling for MR, as well as echo-evidenced PA pressure. Clinical follow-up (mean 2.4±1.9 years) demonstrated ECG and CMR to yield similar results for stratification of arrhythmic risk, with a 2.6-fold increase in risk for atrial fibrillation/flutter among patients in the top P wave area quartile of the population (CI 1.1–5.9, p = 0.02), and a 3.2-fold increase among patients in the top LA area quartile (CI 1.4–7.0, p = 0.005).ConclusionsECG-quantified P wave area provides an index of LA remodeling that parallels CMR-evidenced LA chamber geometry, and provides similar predictive value for stratification of atrial arrhythmic risk.
BackgroundDifferential blood oxygenation between left (LV) and right ventricles (RV; ΔSaO2) is a key index of cardiac performance; LV dysfunction yields increased RV blood pool deoxygenation. Deoxyhemoglobin increases blood magnetic susceptibility, which can be measured using an emerging cardiovascular magnetic resonance (CMR) technique, Quantitative Susceptibility Mapping (QSM) – a concept previously demonstrated in healthy subjects using a breath-hold 2D imaging approach (2DBHQSM). This study tested utility of a novel 3D free-breathing QSM approach (3DNAVQSM) in normative controls, and validated 3DNAVQSM for non-invasive ΔSaO2 quantification in patients undergoing invasive cardiac catheterization (cath).MethodsInitial control (n = 10) testing compared 2DBHQSM (ECG-triggered 2D gradient echo acquired at end-expiration) and 3DNAVQSM (ECG-triggered navigator gated gradient echo acquired in free breathing using a phase-ordered automatic window selection algorithm to partition data based on diaphragm position). Clinical testing was subsequently performed in patients being considered for cath, including 3DNAVQSM comparison to cine-CMR quantified LV function (n = 39), and invasive-cath quantified ΔSaO2 (n = 15). QSM was acquired using 3 T scanners; analysis was blinded to comparator tests (cine-CMR, cath).Results3DNAVQSM generated interpretable QSM in all controls; 2DBHQSM was successful in 6/10. Among controls in whom both pulse sequences were successful, RV/LV susceptibility difference (and ΔSaO2) were not significantly different between 3DNAVQSM and 2DBHQSM (252 ± 39 ppb [17.5 ± 3.1%] vs. 211 ± 29 ppb [14.7 ± 2.0%]; p = 0.39). Acquisition times were 30% lower with 3DNAVQSM (4.7 ± 0.9 vs. 6.7 ± 0.5 min, p = 0.002), paralleling a trend towards lower LV mis-registration on 3DNAVQSM (p = 0.14). Among cardiac patients (63 ± 10y, 56% CAD) 3DNAVQSM was successful in 87% (34/39) and yielded higher ΔSaO2 (24.9 ± 6.1%) than in controls (p < 0.001). QSM-calculated ΔSaO2 was higher among patients with LV dysfunction as measured on cine-CMR based on left ventricular ejection fraction (29.4 ± 5.9% vs. 20.9 ± 5.7%, p < 0.001) or stroke volume (27.9 ± 7.5% vs. 22.4 ± 5.5%, p = 0.013). Cath measurements (n = 15) obtained within a mean interval of 4 ± 3 days from CMR demonstrated 3DNAVQSM to yield high correlation (r = 0.87, p < 0.001), small bias (− 0.1%), and good limits of agreement (±8.6%) with invasively measured ΔSaO2.Conclusion3DNAVQSM provides a novel means of assessing cardiac performance. Differential susceptibility between the LV and RV is increased in patients with cine-CMR evidence of LV systolic dysfunction; QSM-quantified ΔSaO2 yields high correlation and good agreement with the reference of invasively-quantified ΔSaO2.
Left ventricular (LV) infarct size affects prognosis after acute myocardial infarction (AMI). Delayed enhancement cardiac magnetic resonance (DE-CMR) provides accurate infarct quantification but is unavailable or contraindicated in many patients. This study tested whether simple electrocardiography (ECG) parameters can stratify LV infarct size. One hundred fifty-two patients with AMI underwent DE-CMR and serial 12-lead ECG. Electrocardiograms were quantitatively analyzed for multiple aspects of Q-wave morphology, including duration, amplitude, and geometric area (QWAr) summed across all leads except aVR. Patients with pathologic Q waves had larger infarcts measured by DE-CMR or enzymes (both p <0.001), even after controlling for infarct distribution by CMR or x-ray angiography. Comparison between early (4 ± 0.4 days after AMI) and follow-up (29 ± 6 days) ECG demonstrated temporal reductions in Q-wave amplitude (1.8 ± 1.4 vs 1.6 ± 1.6 mV; p = 0.03) but not QWAr (41 ± 38 vs 39 ± 43 mV•ms; p = 0.29). At both times, QWAr augmented stepwise with DE-CMR quantified infarct size (p <0.001). QWAr increased markedly at 10% LV infarct threshold, with differences more than threefold on early ECG (59 ± 39 vs 18 ± 20 mV•ms; p <0.001) and nearly fivefold (59 ± 46 vs 13 ± 16 mV•ms; p <0.001) on follow-up. Diagnostic performance compared with a 10% infarction cutoff was good on early (area under the curve = 0.84) and follow-up (area under the curve = 0.87) ECG. Optimization of sensitivity (95% to 98%) enabled QWAr to exclude affected patients with 90% to 94% negative predictive value at each time point. In conclusion, LV infarct size is accompanied by stepwise increments in Q-wave morphology, with QWAr increased three- to fivefold at a threshold of 10% LV infarction. Stratification based on QWAr provides excellent negative predictive value for exclusion of large (≥10%) LV infarct burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.