We propose an algorithm for inexpensive gradient-based hyperparameter optimization that combines the implicit function theorem (IFT) with efficient inverse Hessian approximations. We present results on the relationship between the IFT and differentiating through optimization, motivating our algorithm. We use the proposed approach to train modern network architectures with millions of weights and millions of hyperparameters. We learn a data-augmentation networkwhere every weight is a hyperparameter tuned for validation performance-that outputs augmented training examples; we learn a distilled dataset where each feature in each datapoint is a hyperparameter; and we tune millions of regularization hyperparameters. Jointly tuning weights and hyperparameters with our approach is only a few times more costly in memory and compute than standard training.• We scale IFT-based hyperparameter optimization to modern, large neural architectures, including AlexNet and LSTM-based language models.• We demonstrate several uses for fitting hyperparameters almost as easily as weights, including perparameter regularization, data distillation, and learned-from-scratch data augmentation methods.• We explore how training-validation splits should change when tuning many hyperparameters.
No abstract
The gradients of convex functions are expressive models of non-trivial vector fields. For example, Brenier's theorem yields that the optimal transport map between any two measures on Euclidean space under the squared distance is realized as a convex gradient, which is a key insight used in recent generative flow models. In this paper, we study how to model convex gradients by integrating a Jacobian-vector product parameterized by a neural network, which we call the Input Convex Gradient Network (ICGN). We theoretically study ICGNs and compare them to taking the gradient of an Input-Convex Neural Network (ICNN), empirically demonstrating that a single layer ICGN can fit a toy example better than a single layer ICNN. Lastly, we explore extensions to deeper networks and connections to constructions from Riemannian geometry.
Pre-training (PT) followed by fine-tuning (FT) is an effective method for training neural networks, and has led to significant performance improvements in many domains. PT can incorporate various design choices such as task and data reweighting strategies, augmentation policies, and noise models, all of which can significantly impact the quality of representations learned. The hyperparameters introduced by these strategies therefore must be tuned appropriately. However, setting the values of these hyperparameters is challenging. Most existing methods either struggle to scale to high dimensions, are too slow and memory-intensive, or cannot be directly applied to the two-stage PT and FT learning process. In this work, we propose an efficient, gradient-based algorithm to meta-learn PT hyperparameters. We formalize the PT hyperparameter optimization problem and propose a novel method to obtain PT hyperparameter gradients by combining implicit differentiation and backpropagation through unrolled optimization. We demonstrate that our method improves predictive performance on two real-world domains. First, we optimize high-dimensional task weighting hyperparameters for multitask pre-training on protein-protein interaction graphs and improve AUROC by up to 3.9%. Second, we optimize a data augmentation neural network for self-supervised PT with SimCLR on electrocardiography data and improve AUROC by up to 1.9%.The PT & FT paradigm introduces high-dimensional, complex PT hyperparameters, such as parameterized data augmentation policies used in contrastive representation learning [8,22] or the use of task, class, or instance weighting variables in multi-task PT to avoid negative transfer [70]. These hyperparameters can significantly affect the quality of pre-trained models [8], and thus finding techniques to set their values optimally is an important area of research.Choosing optimal PT hyperparameter values is challenging, and existing methods do not work well. Simple approaches such as random or grid search are inefficient since evaluating a hyperparameter setting requires performing the full, two-stage PT & FT optimization, which may be prohibitively computationally expensive. Gradient-free approaches, such as Bayesian optimization or evolutionary algorithms [33,61,47], are also limited in how well they scale to this setting. Gradient-based 35th Conference on Neural Information Processing Systems (NeurIPS 2021).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.