As the push towards exascale hardware has increased the diversity of system architectures, performance portability has become a critical aspect for scientific software. We describe the Kokkos Performance Portable Programming Model that allows developers to write single source applications for diverse high-performance computing architectures. Kokkos provides key abstractions for both the compute and memory hierarchy of modern hardware. We describe the novel abstractions that have been added to Kokkos version 3 such as hierarchical parallelism, containers, task graphs, and arbitrary-sized atomic operations to prepare for exascale era architectures. We demonstrate the performance of these new features with reproducible benchmarks on CPUs and GPUs.
HPC has undergone a significant transition toward heterogeneous architectures. This transition has introduced several issues in code migration to support multiple frameworks for targeting the various architectures. In order to cope with these challenges, projects such as Kokkos and LLVM create abstractions which map a generic frontend API to the backend that supports the targeted architecture. This paper presents a complementary framework for performance measurement and analysis. Several performance measurement and analysis tools in existence provide their capabilities through various methods but the common theme among these tools are prohibitive limitations in terms of user-level extensions. For this reason, software developers commonly have to learn multiple tools and valuable analysis methods, such as the roofline model, are frequently required to be generated manually. The timemory framework provides complete modularity for performance measurement and analysis and eliminates all restrictions on user-level extensions. The timemory framework also provides a highly-efficient and intuitive method for handling multiple tools/measurements (i.e., "components") concurrently. The intersection of these characteristics provide ample evidence that timemory can serve as the common interface for existing performance measurement and analysis tools. Timemory components are developed in C++ but includes multi-language support for C, Fortran, and Python codes. Numerous components are provided by the library itself -including, but not limited to, timers, memory usage, hardware counters, and FLOP and instruction roofline models. Additionally, analysis of the intrinsic overhead demonstrates superior performance in comparison with popular tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.