Mutation studies previously showed that the lentivirus lytic peptide (LLP2) sequence of the cytoplasmic C-terminal tail of the HIV-1 gp41 envelope protein inhibited viral-initiated T-cell death and T-cell syncytium formation, at which time in the HIV life cycle the gp41 protein is embedded in the T-cell membrane. In striking contrast, the mutants did not affect virion infectivity, during which time the gp41 protein is embedded in the HIV envelope membrane. To examine the role of LLP2/membrane interactions, we applied synchrotron x-radiation to determine structure of hydrated membranes. We focused on WT LLP2 peptide (+3 charge) and MX2 mutant (-1 charge) with membrane mimics for the T-cell and the HIV-1 membranes. To investigate the influence of electrostatics, cholesterol content, and peptide palmitoylation, we also studied three other LLP2 variants and HIV-1 mimics without negatively charged lipids or cholesterol as well as extracted HIV-1 lipids. All LLP2 peptides bound strongly to T-cell membrane mimics, as indicated by changes in membrane structure and bending. In contrast, none of the weakly bound LLP2 variants changed the HIV-1 membrane mimic structure or properties. This correlates well with, and provides a biophysical basis for, previously published results that reported lack of a mutant effect in HIV virion infectivity in contrast to an inhibitory effect in T-cell syncytium formation. It shows that interaction of LLP2 with the T-cell membrane modulates biological function.
Structural hierarchy, in which materials possess distinct features on multiple length scales, is ubiquitous in nature; diverse biological materials, such as bone, cellulose, and muscle, have as many as ten hierarchical levels. 1-4 Structural hierarchy confers many mechanical advantages, including improved toughness and economy of material. 5, 6 However, it also presents a problem: each hierarchical level adds a new source of assembly errors, and substantially increases the information required for proper assembly. This seems to conflict with the prevalence of naturally occurring hierarchical structures, suggesting that a common mechanical source of hierarchical robustness may exist. However, our ability to identify such a unifying phenomenon is limited by the lack of a general mechanical framework for structures exhibiting organization on disparate length scales. Here, we use simulations to substantiate a generalized model for the tensile stiffness of hierarchical, stretching-stabilized, filamentous networks with a nested, dilute triangular lattice structure. Following seminal work by Maxwell and others on criteria for stiff frames 7-10 , we extend the concept of connectivity in network mechanics, and find a mathematically similar dependence of material stiffness upon each hierarchical level. Using this model, we find that the stiffness of such networks becomes less sensitive to errors in assembly with additional levels of hierarchy; though surprising, we show that this result is analytically predictable from first principles, and thus likely model-independent. More broadly, this work helps account for the success of hierarchical, filamentous materials in biology and materials design, and offers a heuristic for ensuring that desired material properties are achieved within the required tolerance. arXiv:1808.01063v1 [cond-mat.soft]
Differential dynamic microscopy, image autocorrelation, and mechanistic modeling show that actomyosin–microtubule composites exhibit tunable ballistic contraction and restructuring with microtubules enabling emergent sustained and controlled dynamics.
Articular cartilage is a remarkable material able to sustain millions of loading cycles over decades of use outperforming any synthetic substitute. Crucially, how extracellular matrix constituents alter mechanical performance, particularly in shear, remains poorly understood. Here, we present experiments and theory in support of a rigidity percolation framework that quantitatively describes the structural origins of cartilage’s shear properties and how they arise from the mechanical interdependence of the collagen and aggrecan networks making up its extracellular matrix. This framework explains that near the cartilage surface, where the collagen network is sparse and close to the rigidity threshold, slight changes in either collagen or aggrecan concentrations, common in early stages of cartilage disease, create a marked weakening in modulus that can lead to tissue collapse. More broadly, this framework provides a map for understanding how changes in composition throughout the tissue alter its shear properties and ultimate in vivo function.
The cytoskeleton is a model active matter system that controls diverse cellular processes from division to motility. While both active actomyosin dynamics and actin-microtubule interactions are key to the cytoskeleton's versatility and adaptability, an understanding of their interplay is lacking. Here, we couple microscale experiments with mechanistic modeling to elucidate how connectivity, rigidity, and force-generation affect emergent material properties in in vitro composites of actin, tubulin, and myosin. We use time-resolved differential dynamic microscopy and spatial image autocorrelation to show that ballistic contraction occurs in composites with sufficient flexibility and motor density, but that a critical fraction of microtubules is necessary to sustain controlled dynamics. Our active double-network models reveal that percolated actomyosin networks are essential for contraction, but that networks with comparable actin and microtubule densities can uniquely resist mechanical stresses while simultaneously supporting substantial restructuring. Our findings provide a much-needed blueprint for designing cytoskeleton-inspired materials that couple tunability with resilience and adaptability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.