The synthesis and characterization of N,N'-dimesityl-4,6-diketo-5,5-dimethylpyrimidin-2-ylidene is reported; this crystalline N,N'-diamidocarbene was found to split ammonia and engage in other reactions not exhibited by typical N-heterocyclic carbenes.
A related series of six-membered carbenes featuring adjoining amino and/or amido groups (i.e, a diaminocarbene, a monoamido-aminocarbene (3), and a a diamidocarbene (6)) were systematically compared using crystallographic, spectroscopic, electrochemical, and density functional theory methods. The solid-state structure of 3 was found to exhibit inequivalent nitrogen− carbon bond lengths (C carbene −N amide = 1.395(4) Å vs C carbene −N amine = 1.323(4) Å). Moreover, the C carbene −N amide distance was longer than that measured in the solid-state structure of 6 (1.371(3) Å), while the C carbene −N amine distance was similar to that measured in the solid-state structure of a cyclic alkyl-aminocarbene (1.315(3) Å). Iridium complexes of the aforementioned carbenes were also evaluated, and the collected data revealed that the introduction of carbonyl groups to the carbene-containing scaffold had a nearly linear, additive effect on the E 1/2 potential of the carbene-ligated iridium I/II redox couple (+165 mV per carbonyl added) as well as the Tolman electronic parameter value of the corresponding carbene−Ir(CO) 2 Cl complex (ca. 7 cm −1 per carbonyl added). Beyond attenuated ligand donicity, the introduction of carbonyl groups was found to broaden the chemical reactivity: unlike prototypical N-heterocyclic carbenes, including diaminocarbenes, the monoamido-aminocarbene was found to couple to isonitriles to form the respective ketenimines.
Since the first reported isolation of a carbene just over a quarter century ago, the study of such compounds-including stable derivatives-has flourished. Indeed, N-heterocyclic carbenes (NHCs), of which imidazolylidenes and their derivatives are the most pervasive subclass, feature prominently in organocatalysis, as ligands for transition metal catalysts, and as stabilizers of reactive species. However, imidazolylidenes (and many other NHCs) typically lack the reactivity characteristic of electrophilic carbenes, including insertion into unactivated C-H bonds, participation in [2 + 1] cycloadditions, and reaction with carbon monoxide. This has led to debates over whether NHCs are truly carbenic in nature or perhaps better regarded as ylides. The fundamental and synthetic utility of transformations that involve electrophilic carbenes has motivated our group and others to expand the reactivity of NHCs and other stable carbenes to encompass electrophilic carbene chemistry. These efforts have led to the development of the diamidocarbenes (DACs), a stable and unique subset of the NHCs that feature carbonyl groups inserted into the N-heterocyclic scaffold. To date, crystalline five-, six-, and seven-membered DACs have been prepared and studied. Unlike imidazolylidenes, which are often designated as prototypical NHCs, the DACs exhibit a reactivity profile similar to that of bona fide carbenes, reactive species that are less "tamed" by heteroatom π conjugation. The DACs engage in [2 + 1] cycloadditions with electron-rich or -poor alkenes, aldehydes, alkynes, and nitriles, and doing so in a reversible manner in some cases. They also react with isonitriles, reversibly couple to CO, and mediate the dehydrogenation of hydrocarbons. Such rich chemistry may be rationalized in terms of their ambiphilicity: DACs are nucleophilic, as required for some of the reactions above, yet also have electrophilic character, as evidenced by their insertions into unactivated N-H and C-H bonds, including nonacidic derivatives. As will become clear, such reactivity is unique among isolable carbenes. DAC chemistry is expected to find applications in synthesis, dynamic covalent chemistry, and catalysis. For example, the hydrolysis of DAC-derived diamidocyclopropanes and -propenes affords carboxylic acids and cyclopropenones, respectively. These new hydrocarboxylation and carbonylation methodologies are significant in that they represent alternatives to processes that typically involve precious metals and gaseous carbon monoxide. Future efforts in this area may involve modifications that transform the stoichiometric conversions facilitated by DACs into catalytic variants. In this context, the reversible binding of CO to DACs is an indication that the latter may serve as a blueprint for the development of more electrophilic, stable carbenes with the capacity to activate other challenging small molecules.
We describe the synthesis of a variety of cyclopropanes and epoxides by combining a readily accessible and isolable N,N'-diamidocarbene with a range of structurally and electronically diverse olefins and aldehydes, including electron-rich derivatives. Surprisingly, the cyclopropanation and epoxidation reactions were discovered to be rapid and thermally reversible at relatively low temperatures, two features often desired for applications that utilize dynamic covalent chemistry. In addition, a diamidocyclopropane derivative prepared via this method was hydrolysed successfully to form the corresponding linear carboxylic acid in a metal- and carbon monoxide-free hydrocarboxylation reaction. As such, diamidocarbenes are expected to find utility in the synthesis of cyclopropanes, epoxides and their derivatives, as well as in dynamic covalent chemistry applications.
An N,N'-diamidocarbene (DAC) was found to activate a broad range of primary as well as secondary aliphatic and aromatic amines. The relative rates measured for the insertion of the DAC into the primary amines were consistent with an electrophilic activation mechanism; in contrast, the DAC functioned as a nucleophile upon treatment with secondary aryl amines. Collectively, these results constituted the first ambiphilic process for an isolable carbene. By comparison, an analogous diaminocarbene was found to serve exclusively as a nucleophile under similar conditions and led to the discovery of the first organic reagent to reversibly activate ammonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.