Amyloid fibres attract considerable interests due to their biological roles in neurodegenerative diseases and their potentials as functional biomaterials. We describe here a completely new finding about an intrinsic signal of amyloid fibres in the near infrared (NIR) range. When combined with their recently reported blue luminescence, it paves the way toward new blueprints for label-free detections of amyloid deposits within in vitro up to in vivo contexts. The blue luminescence allows for staining-free characterization of amyloid deposits within human samples. The NIR signal offers promising prospects for innovative diagnostic strategies of neurodegenerative diseases; a need to improve medical care and to develop new therapies. As a proof of concept, we demonstrate direct detection of amyloid deposits within brains of living aged "Alzheimer's" mice using non-invasive and contrast agent-free imaging. UV-Vis-NIR optical properties of amyloids opens new research avenues across amyloidoses as well as for next generation biophotonic devices.
Background:The translocation of the Bordetella pertussis CyaA toxin across membrane is still poorly understood. Results: A membrane-active peptide isolated from the CyaA toxin is characterized by biophysical approaches.
Conclusion:The ␣-helical peptide is inserted in plane and induces membrane permeabilization. Significance: The membrane-destabilizing activity of this peptide may assist the initial steps of the CyaA translocation process.
Templating mechanism of S100A9 amyloids on Aβ fibrillar surfaces during amyloid co-aggregation process was revealed by synergy of biophysical methods including charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.