Debate over the influence of postwildfire management on future fire severity is occurring in the absence of empirical studies. We used satellite data, government agency records, and aerial photography to examine a forest landscape in southwest Oregon that burned in 1987 and then was subject, in part, to salvage-logging and conifer planting before it reburned during the 2002 Biscuit Fire. Areas that burned severely in 1987 tended to reburn at high severity in 2002, after controlling for the influence of several topographical and biophysical covariates. Areas unaffected by the initial fire tended to burn at the lowest severities in 2002. Areas that were salvage-logged and planted after the initial fire burned more severely than comparable unmanaged areas, suggesting that fuel conditions in conifer plantations can increase fire severity despite removal of large woody fuels.public land management ͉ salvage-logging ͉ Biscuit Fire ͉ Landsat ͉ landscape ecology
The northeastern United States is a predominately-forested region that, like most of the eastern U.S., has undergone a 400-year history of intense logging, land clearance for agriculture, and natural reforestation. This setting affords the opportunity to address a major ecological question: How similar are today's forests to those existing prior to European colonization? Working throughout a nine-state region spanning Maine to Pennsylvania, we assembled a comprehensive database of archival land-survey records describing the forests at the time of European colonization. We compared these records to modern forest inventory data and described: (1) the magnitude and attributes of forest compositional change, (2) the geography of change, and (3) the relationships between change and environmental factors and historical land use. We found that with few exceptions, notably the American chestnut, the same taxa that made up the pre-colonial forest still comprise the forest today, despite ample opportunities for species invasion and loss. Nonetheless, there have been dramatic shifts in the relative abundance of forest taxa. The magnitude of change is spatially clustered at local scales (<125 km) but exhibits little evidence of regional-scale gradients. Compositional change is most strongly associated with the historical extent of agricultural clearing. Throughout the region, there has been a broad ecological shift away from late successional taxa, such as beech and hemlock, in favor of early- and mid-successional taxa, such as red maple and poplar. Additionally, the modern forest composition is more homogeneous and less coupled to local climatic controls.
In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches. K E Y W O R D SDouglas-fir, forest resilience, Klamath Mountains, postfire recruitment, propagule pressure, reburn, stem analysis, tipping point, tree regeneration
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.