An infection with the cat lungworm, Aelurostrongylus abstrusus, can be subclinical, but it can also cause severe respiratory clinical signs. Larvae excretion, antibody levels, clinical assessment findings of the respiratory system and diagnostic imaging findings were recorded and compared for six cats with experimental aelurostrongylosis. In five cats, patency started 33–47 days post infection (pi), but two cats excreted larvae only in long intervals and low numbers. Positive ELISA results were observed in four cats with patent aelurostrongylosis, starting between five days before and 85 days after onset of patency. One seropositive cat remained copromicroscopically negative. Mild respiratory signs were observed in all cats examined. A computed tomographic (CT) examination of the lungs displayed distinct alterations, even in absence of evident clinical signs or when larvae excretion was low or negative. The thoracic radiograph evaluation correlated with the CT results, but CT was more distinctive. After anthelmintic treatment in the 25th week post infection, pulmonary imaging findings improved back to normal within 6–24 weeks. This study shows that a multifaceted approach, including diagnostic imaging, can provide a clearer diagnosis and monitoring of disease progression. Furthermore, a CT examination provides an alternative to post mortem examination and worm counts in anthelmintic efficacy studies.
Background Exercise testing in conjunction with measurement of cardiac biomarkers NT-proBNP and cTnI is a useful tool for monitoring the effect of treatment on cardiac patients. Administering Pimobendan in dogs with degenerative mitral valve disease (DMVD) and cardiomegaly results in delaying the onset of clinical symptoms and prolonging life. Its effect in dogs with DMVD without cardiomegaly has not been well examined. The aim of the current study was to investigate the effect of administering Pimobendan in dogs with DMVD without cardiomegaly using exercise testing in conjunction with measuring cardiac biomarkers in addition to echocardiography. Twenty-one dogs with asymptomatic DMVD without echocardiographic signs of cardiomegaly participated in a randomised, double-blinded trial. Dogs were divided into a Pimobendan-group ( n = 11) and a placebo-group ( n = 10) in a double-blinded study design and underwent a standardised submaximal exercise test (SSET). One dog in the Pimobendan-group was retrospectively removed from the study after being diagnosed with Leishmaniosis. Cardiac biomarkers NT-proBNP and cTnI were measured before and after exercise. Follow-up appointments were performed at days 90 and 180. Results Dogs in the Pimobendan-group had significantly lower post-exercise NT-proBNP-levels after being administered Pimobendan than at the beginning of the study. They also had lower pre- and post-exercise-NT-proBNP-levels than those dogs in the placebo-group. There was neither a significant difference regarding the measured cTnI levels nor an increase in cTnI between the groups at any time. Conclusions Pimobendan lowers NT-proBNP in dogs with presymptomatic mitral valve disease without cardiomegaly before and after submaximal exercise. This indicates a reduction in cardiac wall stress. If dogs with asymptomatic DMVD without cardiomegaly benefit from treatment with Pimobendan (for example, through a longer survival time) warrants further investigation.
Pimobendan has gained enormous importance in the treatment of mitral valve disease in dogs. The current consensus statement of the American College of Veterinary Internal Medicine (ACVIM) recommends a treatment for dogs with symptomatic disease and dogs with asymptomatic disease with radiographic and echocardiographic signs of cardiomegaly. To investigate whether these dogs also benefit from a therapy with pimobendan, 21 dogs with mitral valve disease ACVIM B1 underwent a standardized submaximal exercise test on a treadmill. In this double-blinded and randomized study, the animals were divided into two groups, one receiving pimobendan and the other a placebo. At the first visit and at every follow-up appointment (at days 90 and 180), heart rate during the complete exercise test and lactate before and after running were measured. In addition to this, a questionnaire was completed by the dogs’ owners and all dogs were given an echocardiographic examination to detect any changes and to observe if the disease had progressed. Due to the diagnosis of leishmaniosis, one dog in the pimobendan group was retrospectively removed from the study so that 20 dogs were included for statistical analysis. No differences were observed at any time between the pimobendan-group and the placebo-group regarding heart rate. At day 180, the increase in lactate after exercise was significantly lower than in the placebo-group. The increase in the pimobendan-group at day 180 was lower than at day 90. Most of the dog owners from the pimobendan-group declared that their dogs were more active at day 90 (6/10) and at day 180 (8/10), while most dog owners from the placebo-group observed no changes regarding activity at day 90 (8/10) and day 180 (6/10). It can be concluded that the results of this study indicate that some dogs with mitral valve disease ACVIM B1 might benefit from a therapy with pimobendan.
Background Dogs with degenerative mitral valve disease are commonly presented to small animal clinicians. Diagnosis, clinical staging, and therapeutic design are based on a combination of clinical examination, radiography, and echocardiography. To support diagnosis and clinical monitoring, a multi-marker-based approach would be conceivable. The aim of this study was to investigate the suitability of Galectin-3 and interleukin-1 receptor-like 1 protein (ST2) in dogs with degenerative mitral valve disease in accordance with N-terminal-prohormone-B-type natriuretic peptide (NT-proBNP) and cardiac troponin I (cTnI). For this purpose, serum concentrations of Galectin-3 and ST2 of 64 dogs with different stages of mitral valve disease and 21 dogs without cardiac disease were analyzed at the first examination and six months later. Echocardiography, blood cell count and clinical chemistry were performed and established biomarkers NT-proBNP and cTnI were measured additionally. Differences in the biomarker concentrations between all groups at both timepoints and the change in biomarker concentrations from first to second evaluation was investigated. Furthermore, correlations of each biomarker, between biomarkers and echocardiographic measurements, were calculated. Finally, the receiver-operating characteristic curve and the area under the curve analysis were performed to differentiate between disease stages and controls. Results Serum concentrations of Galectin-3 and ST2 were not statistically different between canine patients in the respective stages of mitral valve disease or in comparison to dogs in the control group at any timepoint. A significant increase in ST2 concentrations from the baseline to the follow-up examination was observed in dogs classified as stage B1 and the control group. The concentrations of NT-proBNP and cTnI in stage C dogs were significantly increased in comparison to the other groups. Conclusions In this study, no relation between Galectin-3 and ST2 levels to the presence or stage of mitral valve disease could be detected. Nevertheless, considering the increase in ST2 concentrations from the first to second measurement, its value on monitoring disease progress could be feasible. In agreement with previous studies, NT-proBNP and cTnI have once more proven their utility in assessing disease severity. The approach of examining new cardiac biomarkers in dogs is still worth pursuing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.