Recent studies have shown an insecticidal effect of Tithonia diversifolia (Hemsl.) Gray (Asterales: Asteraceae) foliage on workers of Atta cephalotes L. and inhibitory effects of this plant on the growth of the symbiotic fungus Leucoagaricus gongylophorus (A. Müler) Singer. To evaluate the potential of T. diversifolia as a biological control treatment of this important pest, we assessed the effect of green manure (mulch) of this plant on natural nests of A. cephalotes, in Cali, Colombia. Three treatments were randomly assigned to 30 nests: 1) green mulch of T. diversifolia, 2) green mulch of Miconia sp., Ruiz & Pav. and 3) unmulched control. Every 2 wk for 6 mo, the surface of the nests was completely covered with leaves. Physical and chemical parameters of nest soil were assessed before the first and after the last application of the mulch. Ant foraging in T. diversifolia-treated nests decreased by 60% after the initial applications of the mulch, while nest surface area decreased by 40%. When the nests covered with T. diversifolia were opened, it was observed that the superficial fungus chambers had been relocated at a greater depth. In addition, microbial activity and soil pH increased by 84% and 12%, respectively, in nests covered with plant residues. In conclusion, the continued use of T. diversifolia mulch reduces foraging activity and negatively affects the internal conditions of the colonies, thereby inducing the ants to relocate the fungus chambers within the nests.
Leaf-cutter ants are agricultural and urban pests that defy chemical control methods. Laboratory and field studies have revealed repellent and insecticidal activity by the extracts of Tithonia diversifolia (Asteraceae), known as Mexican sunflower, as a promising alternative for the control of the leaf-cutter ant Atta cephalotes. This study evaluated the effects of different extracts (non-polar and polar) of T. diversifolia dry leaves on worker ants from laboratory colonies of A. cephalotes through ingestion and contact. In addition, the biological activity of the extracts as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was evaluated. A dichloromethane extract at 1000 ppm presented the highest insecticidal activity through ingestion, causing 70% and 90% worker ant mortality after five and seven days of treatment, respectively. The acetylcholinesterase inhibition values showed that the dichloromethane presented the best AChE concentration of inhibition (IC50) at 73.9 ± 11.06 μg/mL, compared to its fractions, which demonstrates that its activity is potentiated when the crude extract is used. Our results can be attributed to the existence of terpenes and sesquiterpene lactones, which are likely inhibitors of AChE, in T. diversifolia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.