We report on the design and experimental testing of a Stirling refrigerator that uses air as the working fluid, and where the conventional piston-cylinder assemblies are replaced by pressure-driven flexible chambers. The two chambers are periodically compressed by pneumatic actuators resulting in airflow through the regenerator and in a net temperature difference between the chambers. An experimental setup is used to investigate the performance of the refrigerator under different operating conditions with particular attention to actuation frequencies, driving pressure differences, and phase angles between the two inputs. The time constant of the temperature difference between the two chambers is determined, and the temperature difference is measured as a function of the system parameters. The results of several tests conducted under different operating conditions show that the refrigerating effect is very robust and allows good performance even for modulated inputs. The frequency response is radically different from that of a traditional motion-driven device. This work suggests that mechanical to thermal energy conversion devices based on this principle can be successfully powered by human motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.