Over the past century, hydrogels have emerged as effective materials for an immense variety of applications. The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while at the same time exhibiting the soft physical properties associated with living tissue, making them ideal biomaterials. Stimulus-responsive hydrogels have been especially impactful, allowing for unprecedented levels of control over material properties in response to external cues. This enhanced control has enabled groundbreaking advances in healthcare, allowing for more effective treatment of a vast array of diseases and improved approaches for tissue engineering and wound healing. In this extensive review, we identify and discuss the multitude of response modalities that have been developed, including temperature, pH, chemical, light, electro, and shear-sensitive hydrogels. We discuss the theoretical analysis of hydrogel properties and the mechanisms used to create these responses, highlighting both the pioneering and most recent work in all of these fields. Finally, we review the many current and proposed applications of these hydrogels in medicine and industry.
Gene therapy is the modification of gene expression to treat a disease. However, efficient intracellular delivery and monitoring of gene therapeutic agents is an ongoing challenge. Use of theranostic agents with suitable targeted, controlled delivery and imaging modalities has the potential to greatly advance gene therapy. Inorganic nanoparticles including magnetic nanoparticles, gold nanoparticles, and quantum dots have been shown to be effective theranostic agents for the delivery and spatiotemporal tracking of oligonucleotides in vitro and even a few cases in vivo. Major concerns remain to be addressed including cytotoxicity, particularly of quantum dots; effective dosage of nanoparticles for optimal theranostic effect; development of real-time in vivo imaging; and further improvement of gene therapy efficacy.
Hydrogels are crosslinked polymeric networks swollen in water, physiological aqueous solutions, or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic, and can contain multifunctional crosslinks, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel’s molecular architecture will affect their physicochemical, mechanical, and biological properties. We present a critical summary of the main methods to synthesize hydrogels which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
In this work, poly(N-isopropyl acrylamide-co-acrylamide) [P(NIPAAm-co-AAm)] nanogels were modified by hydrolysis above the lower critical solution temperature (LCST) to localize carboxylic acid functional groups at the surface (surface hydrolysis). PNIPAAm copolymerized with 15% and 20% nominal AAm in the feed were prepared and compared to equivalent hydrogels with acrylic acid. The effect and extent of surface hydrolysis was confirmed by potentiometric titration and zeta potential. These surface modified nanogels were then modified with primary amine functionalized PEG chains. Surface hydrolysis-mediated PEGylation had little effect on the swelling response of the nanogels, while also preventing adsorption of model proteins in physiological relevant conditions. While both 15% and 20% AAm gels both decreased protein adsorption, only the 20% AAm gels resulted in fully preventing protein adsorption. The results presented here point to surface hydrolysis as a new route to passivate nanogels for use in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.