Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed (CFB) are conducted. Experimental measurements of pressure drop are taken at various locations along the bed. The solids circulation rate is measured with an advanced particle image velocimetry (PIV) technique. Bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a computational fluid dynamics solver utilizing a discrete element method (CFD-DEM). This paper examines the effect of different drag laws used in the CFD simulations through a detailed and direct comparison with experimental data from a small-scale, full-loop circulating fluidized bed. The Hill−Koch−Ladd drag correlation was shown to have good agreement with respect to system component pressure drop and inventory height in the standpipe.
Useful prediction of the kinematics, dynamics, and chemistry of a system relies on precision and accuracy in the quantification of component properties, operating mechanisms, and collected data. In an attempt to emphasize, rather than gloss over, the benefit of proper characterization to fundamental investigations of multiphase systems incorporating solid particles, a set of procedures were developed and implemented for the purpose of providing a revised methodology having the desirable attributes of reduced uncertainty, expanded relevance and detail, and higher throughput. Better, faster, cheaper characterization of multiphase systems result.
Methodologies are presented to characterize particle size, shape, size distribution, density (particle, skeletal and bulk), minimum fluidization velocity, void fraction, particle porosity, and assignment within the Geldart Classification. A novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Accuracy of properties-characterization methodology was validated on materials of known properties prior to testing materials of unknown properties. Several of the standard present-day techniques were scrutinized and improved upon where appropriate. Validity, accuracy, and repeatability were assessed for the procedures presented and deemed higher than present-day techniques.
A database of over seventy materials has been developed to assist in model validation efforts and future designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.