Five quantitative methodologies (metrics) that may be used to assess the skill of sea ice models against a control field are analyzed. The methodologies are Absolute Deviation, Root‐Mean‐Square Deviation, Mean Displacement, Hausdorff Distance, and Modified Hausdorff Distance. The methodologies are employed to quantify similarity between spatial distribution of the simulated and control scalar fields providing measures of model performance. To analyze their response to dissimilarities in two‐dimensional fields (contours), the metrics undergo sensitivity tests (scale, rotation, translation, and noise). Furthermore, in order to assess their ability to quantify resemblance of three‐dimensional fields, the metrics are subjected to sensitivity tests where tested fields have continuous random spatial patterns inside the contours. The Modified Hausdorff Distance approach demonstrates the best response to tested differences, with the other methods limited by weak responses to scale and translation. Both Hausdorff Distance and Modified Hausdorff Distance metrics are robust to noise, as opposed to the other methods. The metrics are then employed in realistic cases that validate sea ice concentration fields from numerical models and sea ice mean outlook against control data and observations. The Modified Hausdorff Distance method again exhibits high skill in quantifying similarity between both two‐dimensional (ice contour) and three‐dimensional (ice concentration) sea ice fields. The study demonstrates that the Modified Hausdorff Distance is a mathematically tractable and efficient method for model skill assessment and comparison providing effective and objective evaluation of both two‐dimensional and three‐dimensional sea ice characteristics across data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.