The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power.This article is part of the themed issue ‘Quantum technology for the 21st century’.
The sensing of gravity has emerged as a tool in geophysics applications such as engineering and climate research1–3, including the monitoring of temporal variations in aquifers4 and geodesy5. However, it is impractical to use gravity cartography to resolve metre-scale underground features because of the long measurement times needed for the removal of vibrational noise6. Here we overcome this limitation by realizing a practical quantum gravity gradient sensor. Our design suppresses the effects of micro-seismic and laser noise, thermal and magnetic field variations, and instrument tilt. The instrument achieves a statistical uncertainty of 20 E (1 E = 10−9 s−2) and is used to perform a 0.5-metre-spatial-resolution survey across an 8.5-metre-long line, detecting a 2-metre tunnel with a signal-to-noise ratio of 8. Using a Bayesian inference method, we determine the centre to ±0.19 metres horizontally and the centre depth as (1.89 −0.59/+2.3) metres. The removal of vibrational noise enables improvements in instrument performance to directly translate into reduced measurement time in mapping. The sensor parameters are compatible with applications in mapping aquifers and evaluating impacts on the water table7, archaeology8–11, determination of soil properties12 and water content13, and reducing the risk of unforeseen ground conditions in the construction of critical energy, transport and utilities infrastructure14, providing a new window into the underground.
“Cold atoms” can be used as ultra-sensitive sensors for measuring accelerations and are capable of mapping changes in the strength of gravity across the surface of the Earth. They could offer significant benefits to existing space based gravity sensing capabilities. Gravity sensors in space are already used for many Earth observation applications including monitoring polar ice mass, ocean currents and sea level. Cold atom sensors could enable higher resolution measurements which would allow monitoring of smaller water sources and discovery of new underground natural resources which are currently undetectable. The adoption of cold atom technology is constrained by low technology readiness level (TRL). Teledyne e2v and its partners are addressing this maturity gap through project Cold Atom Space PAyload (CASPA) which is an Innovate UK and Engineering and Physical Sciences Research Council (EPSRC) funded project, involving the University of Birmingham as science lead, XCAM, Clyde Space, Covesion, Gooch & Housego, and the University of Southampton. Through the CASPA project the consortium have built and vibration tested a 6U (approximate dimensions: 100 × 200 × 300 mm) cube Satellite (CubeSat) that is capable of laser cooling atoms down to 100’s of micro kelvin, as a pre-cursor to gravity sensors for future Earth observation missions.
The extraordinary performance offered by cold atom-based clocks and sensors has the opportunity to profoundly affect a range of applications, for example in gravity surveys, enabling long term monitoring applications through low drift measurements. While ground-based devices are already starting to enter the commercial market, significant improvements in robustness and reductions to size, weight, and power are required for such devices to be deployed by Unstaffed Aerial Vehicle systems (UAV). In this article, we realise the first step towards the deployment of cold atom based clocks and sensors on UAV’s by demonstrating an UAV portable magneto-optical trap system, the core package of cold atom based systems. This system is able to generate clouds of 2.1±0.2×107 atoms, in a package of 370 mm × 350 mm × 100 mm, weighing 6.56 kg, consuming 80 W of power.
Recent advances in the understanding and control of cold atom systems have resulted in devices with extraordinary metrological performance. To further improve the performance in these systems, additional methods of noise reduction are needed. Here, we examine the noise reduction possible from vacuum compatible low reflection coatings in cold atom systems by characterizing a black coating and its compatibility in a Magneto-Optical Trap (MOT). We demonstrate that the commercially available PCO35® coating provides low-reflectivity surfaces that are ultra-high vacuum compatible. The reflective properties of the coating are compared to titanium, a common vacuum chamber material, and the reduction to scattered light is characterized over a range of angles and wavelengths. The outgassing properties of the coating are measured to be less than that of the vacuum system used to test the coating, which is limited to 3 × 10−8 mbar L cm−2 s−1. The coating is applied to a vacuum chamber housing a rubidium prism MOT, and its vacuum compatibility is assessed and compared to an identical non-coated system. Finally, the effect of scattered light reduction in a generalized system is explored theoretically. These results show promise for reducing background light in cold atom experiments via the use of low-reflectivity coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.