“Cold atoms” can be used as ultra-sensitive sensors for measuring accelerations and are capable of mapping changes in the strength of gravity across the surface of the Earth. They could offer significant benefits to existing space based gravity sensing capabilities. Gravity sensors in space are already used for many Earth observation applications including monitoring polar ice mass, ocean currents and sea level. Cold atom sensors could enable higher resolution measurements which would allow monitoring of smaller water sources and discovery of new underground natural resources which are currently undetectable. The adoption of cold atom technology is constrained by low technology readiness level (TRL). Teledyne e2v and its partners are addressing this maturity gap through project Cold Atom Space PAyload (CASPA) which is an Innovate UK and Engineering and Physical Sciences Research Council (EPSRC) funded project, involving the University of Birmingham as science lead, XCAM, Clyde Space, Covesion, Gooch & Housego, and the University of Southampton. Through the CASPA project the consortium have built and vibration tested a 6U (approximate dimensions: 100 × 200 × 300 mm) cube Satellite (CubeSat) that is capable of laser cooling atoms down to 100’s of micro kelvin, as a pre-cursor to gravity sensors for future Earth observation missions.
This paper proposes a position fixing method for autonomous navigation using partial gravity gradient solutions from cold atom interferometers. Cold atom quantum sensors can provide ultra-precise measurements of inertial quantities, such as acceleration and rotation rates. However, we investigate the use of pairs of cold atom interferometers to measure the local gravity gradient and to provide position information by referencing these measurements against a suitable database. Simulating the motion of a vehicle, we use partial gravity gradient measurements to reduce the positional drift associated with inertial navigation systems. Using standard open source global gravity databases, we show stable navigation solutions for trajectories of over 1000 km.
Cold Atom technology has undergone rapid development in recent years and has been demonstrated in space in the form of cold atom scientific experiments and technology demonstrators, but has so far not been used as the fundamental sensor technology in a science mission. The European Space Agency therefore funded a 7-month project to define the CASPA-ADM mission concept, which serves to demonstrate cold-atom interferometer (CAI) accelerometer technology in space. To make the mission concept useful beyond the technology demonstration, it aims at providing observations of thermosphere mass density in the altitude region of 300–400 km, which is presently not well covered with observations by other missions. The goal for the accuracy of the thermosphere density observations is 1% of the signal, which will enable the study of gas–surface interactions as well as the observation of atmospheric waves. To reach this accuracy, the CAI accelerometer is complemented with a neutral mass spectrometer, ram wind sensor, and a star sensor. The neutral mass spectrometer data is considered valuable on its own since the last measurements of atmospheric composition and temperature in the targeted altitude range date back to 1980s. A multi-frequency GNSS receiver provides not only precise positions, but also thermosphere density observations with a lower resolution along the orbit, which can be used to validate the CAI accelerometer measurements. In this paper, we provide an overview of the mission concept and its objectives, the orbit selection, and derive first requirements for the scientific payload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.