Two isomers of a cyanine dye a-cyclodextrin rotaxane have been synthesised in aqueous solution, and structurally characterised by 2D NMR spectroscopy; they exhibit enhanced fluorescence and photostability, compared with the free dye.
A 1 : 1 crystalline complex of lead(IV) tetraacetate and pyridine (LTA-py) has been prepared. The single-crystal X-ray structure, at 296 and 150 K, establishes the presence of a relatively short Pb-N bond (2.307 A) within an intriguing seven-coordinate lead inner sphere consisting of the pyridine ligand and two bidentate and two monodentate acetate ligands. The pyridine occupies a surprising amount of the available coordination space and has induced a dramatic change in coordination compared to the four chelating acetate ligands found in lead tetraacetate (LTA). Thermal measurements (TGA/DSC) indicate the de-coordination of pyridine and its loss from the solid between 360 and 380 K. (207)Pb CP/MAS NMR spectroscopy also demonstrates the existence of the Pb-N bond through observation of (1)J((207)Pb,(14)N)= 63 Hz and a (207)Pb-(14)N dipolar coupling constant, of 149 Hz. The solid-state (207)Pb NMR parameters are used to give insight into the coordination environment of Pb(iv) in LTA-py. In solution, ligand exchange is rapid on chemical shift and J-coupling time scales. A (207)Pb NMR study of the titration of an LTA solution by pyridine yields a stability constant for LTA-py of K = 1.5 M(-1) and predicts it to have a (207)Pb NMR chemical shift essentially identical to that observed by CP/MAS NMR in the solid state. This correlation between the solid state and solution indicates that the seven-coordinate LTA-py structure found in the crystalline state does persist in solution, and this could further explain why the addition of pyridine has such profound effects on lead(IV) carboxylate-mediated organic reactions. Simulations of exchange-broadened line shapes of (13)C CP/MAS NMR spectra in the temperature regime above 280 K indicate local motion of the pyridine rings in the form of 180 degrees jumps (activation energy 72.5 kJ mol(-1)); these are first such ring flips reported for a coordinated pyridine ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.