Abstract. This paper presents the state-of-the-art technologies and development trends of wind turbine drivetrains – the system that converts kinetic energy of the wind to electrical energy – in different stages of their life cycle: design, manufacturing, installation, operation, lifetime extension, decommissioning and recycling. Offshore development and digitalization are also a focal point in this study. Drivetrain in this context includes the whole power conversion system: main bearing, shafts, gearbox, generator and power converter. The main aim of this article is to review the drivetrain technology development as well as to identify future challenges and research gaps. The main challenges in drivetrain research identified in this paper include drivetrain dynamic responses in large or floating turbines, aerodynamic and farm control effects, use of rare-earth material in generators, improving reliability through prognostics, and use of advances in digitalization. These challenges illustrate the multidisciplinary aspect of wind turbine drivetrains, which emphasizes the need for more interdisciplinary research and collaboration.
This paper presents lessons learned from own research studies and field experiments with drivetrains on floating wind turbines over the last ten years. Drivetrains on floating support structures are exposed to wave-induced motions in addition to wind loading and motions. This study investigates the drivetrain-floater interactions from two different viewpoints: how drivetrain impacts the sub-structure design; and how drivetrain responses and life are affected by the floater and support structure motion. The first one is linked to the drivetrain technology and layout, while the second question addresses the influence of the wave-induced motion. The results for both perspectives are presented and discussed. Notably, it is highlighted that the effect of wave induced motions may not be as significant as the wind loading on the drivetrain responses particularly in larger turbines. Given the limited experience with floating wind turbines, however, more research is needed. The main aim with this article is to synthesize and share own research findings on the subject in the period since 2009, the year that the first full-scale floating wind turbine, Hywind Demo, entered operation in Norway.
Abstract. This paper presents the state-of-the-art technologies and development trends of wind turbine drivetrains – the energy conversion systems transferring the kinetic energy of the wind to electrical energy – in different stages of their life cycle: design, manufacturing, installation, operation, lifetime extension, decommissioning, and recycling. Offshore development and digitalization are also a focal point in this study. The main aim of this article is to review the drivetrain technology development as well as to identify future challenges and research gaps. Drivetrain in this context includes the whole power conversion system: main bearing, shafts, gearbox, generator, and power converter. The paper discusses current design technologies for each component along with advantages and disadvantages. The discussion of the operation phase highlights the condition monitoring methods currently employed by the industry as well as emerging areas. This article also illustrates the multidisciplinary aspect of wind turbine drivetrains, which emphasizes the need for more interdisciplinary research and collaboration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.