A phase-encoding electronics capable of compensating for the nonlinearity error in a heterodyne laser interferometer is described. The system consists of the phase demodulating electronics and the nonlinearity compensating electronics. For phase demodulation, we use the phase-quadrature mixing technique. For nonlinearity compensation, the offsets, the amplitudes and the phase of two output signals from the demodulator are adjusted electrically so that their Lissajous figure is a circle. As a result, the correct phase can be obtained. An analysis of the nonlinearity in the heterodyne interferometer and the design of the phase-encoding electronics are presented. The experiment was performed in a Michelson-type interferometer using a transverse Zeeman stabilized He-Ne laser. We demonstrate that this method can encode the phase of a heterodyne interferometer with sub-nanometer accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.