-A new method to determine the total harmonic contributions of several customers and the utility at the point of common coupling is presented. The proposed method can quantify the individual harmonic impact of each suspicious harmonic source at the point of common coupling. The individual harmonic impact index is then used to assess the total harmonic contribution of each harmonic source. This index can be calculated by the results processed from instantaneous harmonic voltage and current phasor values. The results demonstrate the performance of the proposed method in terms of steadystate accuracy and response to time-varying operating conditions. The proposed index can be used for billing purposes to control harmonic distortion levels in power systems.
-A technique to allocate responsibilities among the interested parties in electric power system with harmonic voltage distortion at the point of common coupling (PCC) has been presented. The recursive least-squares technique has been used to estimate the parameters of the Thevenin equivalent load model. The validity of the technique has been verified using a simulation which considered the voltage waveform distortion at the PCC between the utility and two industrial consumers. With the estimated data from the measured voltage and current waveform at the PCC, the individual contributions to the distortion of voltage waveform at an interested harmonic frequency have been calculated and could provide a flexible solution to identify the source of harmonic pollution in distribution systems.
-This paper presents a method to select optimal device for mitigating voltage sags. The method is based on economic evaluation and voltage sag assessment involving sag duration as well as magnitude. The economic evaluation is performed by using the operation cost and economic benefit of the mitigation devices. The optimal device can be determined from the values of NPV (net present value) which is widely accepted in cost-benefit analysis. The proposed method can help sensitive customers to select optimal mitigation device. In this paper, the case study considering two sensitive customers was performed by using the proposed method.
In general, an establishment of the traceability on high voltage and high-current measurement systems in approved testing laboratories can be made through the intercomparison test with the international reference system. This paper shows the results of inter-comparison between KERI and Asian STL(Shortcircuit Testing Liaison) reference shunt. The expanded measurement uncertainty was calculated with uncertainty components such as scale factor, non-linearity effect, interference effect and temperature effect. Also inter-laboratory comparison proficiency testing scheme for assuring the quality of the results in the high power testing laboratories is introduced. Consequently, the difference in scale factor of the shunts participating in the proficiency testing was calculated to be less than 0.2 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.