ZnO-based transistors were solution-processed using ∼3.6 nm sized ZnO quantum dots (QDs). Spin-deposited ZnO QD layer was annealed to remove QD capping organic molecules and to increase the connectivity of adjacent QDs. The resulting QD layer was highly transparent and crack free without any noticeable pores. 600 °C annealing of QD channel layer resulted in the highest electrical performances of bottom-gate QD-based transistors. A small quantity of Sn doping into the QD channel layer was found to be effective in further improving the electrical characteristics of the QD-based transistor, in particular exhibiting a higher field-effect mobility (0.282 cm2 V−1 s−1) by more than 4 factors than that of an undoped QD-based one. Finally, a fully transparent Sn-doped QD-based device was demonstrated by sputter deposition of Ga-doped ZnO as source–drain transparent electrodes and its electrical properties were evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.