Analytical and experimental investigations were conducted to study important tip clearance flow phenomena, such as leakage vortex, flow underturning, and the effect of clearance flow on blade loading and losses. A three-dimensional Navier-Stokes code was modified to include a tip clearance model. A recently designed transonic high-work turbine rotor was used as a test case. Detailed measurements were made at rotor inlet and exit planes and compared to analytical results. The comparisons included important design features, such as exit total pressure and flow angle. For tip clearance calculation, the agreement with data was improved in the near-tip region compared to calculation without tip clearance. The clearance flow phenomena, leakage vortex, flow underturning, changing of blade loading, and loss distribution were predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.