BackgroundSprouty2 (SPRY2), a feedback regulator of receptor tyrosine kinase (RTK) signaling, has been shown to be associated with drug resistance and cell proliferation in glioblastoma (GBM), but the underlying mechanisms are still poorly defined.Methods SPRY2 expression and survival patterns of patients with gliomas were analyzed using publicly available databases. Effects of RNA interference targeting SPRY2 on cellular proliferation in established GBM or patient-derived GBM stemlike cells were examined. Loss- or gain-of-function of SPRY2 to regulate the tumorigenic capacity was assessed in both intracranial and subcutaneous xenografts.ResultsSPRY2 was found to be upregulated in GBM, which correlated with reduced survival in GBM patients. SPRY2 knockdown significantly impaired proliferation of GBM cells but not of normal astrocytes. Silencing of SPRY2 increased epidermal growth factor-induced extracellular signal-regulated kinase (ERK) and Akt activation causing premature onset of DNA replication, increased DNA damage, and impaired proliferation, suggesting that SPRY2 suppresses DNA replication stress. Abrogating SPRY2 function strongly inhibited intracranial tumor growth and led to significantly prolonged survival of U87 xenograft-bearing mice. In contrast, SPRY2 overexpression promoted tumor propagation of low-tumorigenic U251 cells.ConclusionsThe present study highlights an antitumoral effect of SPRY2 inhibition that is based on excessive activation of ERK signaling and DNA damage response, resulting in reduced cell proliferation and increased cytotoxicity, proposing SPRY2 as a promising pharmacological target in GBM patients.
We have established several glioma-relevant oncogeneengineered cancer cells to reevaluate the oncogeneselective cytotoxicity of previously well-characterized anticancer drugs, such as etoposide, doxorubicin, staurosporine, and carmustine. Among several glioma-relevant oncogenes (activated epidermal growth factor receptor, Ras, and Akt, as well as Bcl-2 and p53DD used in the present study), the activated epidermal growth factor receptor, Ras, and Akt exerted oncogenic transformation of Ink4a/Arf À/À murine astrocyte cells. We identified that etoposide, a topoisomerase II inhibitor, caused selective killing of myristylated Akt (Akt-myr) -transduced Ink4a/Arf À/À astrocytes and U87MG cells in a dose-and time-dependent manner. Etoposide-selective cytotoxicity in the Akt-myr -transduced cells was shown to be caused by nonapoptotic cell death and occurred in a p53-independent manner. Etoposide caused severe reactive oxygen species (ROS) accumulation preferentially in the Akt-myr -transduced cells, and elevated ROS rendered these cells highly sensitive to cell death. The etoposideselective cell death of Akt-myr -transduced cells was attenuated by pepstatin A, a lysosomal protease inhibitor.In the present study, we show that etoposide might possess a novel therapeutic activity for oncogenic Akttransduced cancer cells to kill preferentially through ROSmediated damage.
Targeting the epigenome has been considered a compelling treatment modality for several cancers, including gliomas. Nearly 80% of the lower-grade gliomas and secondary glioblastomas harbor recurrent mutations in isocitrate dehydrogenase (IDH). Mutant IDH generates high levels of 2-hydroxyglutarate (2-HG) that inhibit various components of the epigenetic machinery, including histone and DNA demethylases. The encouraging results from current epigenetic therapies in hematological malignancies have reinvigorated the interest in solid tumors and gliomas, both preclinically and clinically. Here, we summarize the recent advancements in epigenetic therapy for lower-grade gliomas and discuss the challenges associated with current treatment options. A particular focus is placed on therapeutic mechanisms underlying favorable outcome with epigenetic-based drugs in basic and translational research of gliomas. This review also highlights emerging bridges to combination treatment with respect to epigenetic drugs. Given that epigenetic therapies, particularly DNA methylation inhibitors, increase tumor immunogenicity and antitumor immune responses, appropriate drug combinations with immune checkpoint inhibitors may lead to improvement of treatment effectiveness of immunotherapy, ultimately leading to tumor cell eradication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.