Anthocyanin pigments are extracted from various plants and used for diverse purposes. The overall goal of this study was to develop high-anthocyanin corn to enhance the economic efficiency of anthocyanin production. We determined and compared the anthocyanin contents from the different parts of purple corn in various breeding lines. Our results revealed that purple corn produced the anthocyanin pigment throughout the plant, especially high in the husk and cob regions, although anthocyanin levels varied significantly among different plant parts. We analyzed the 295 selected lines from the 2006 breeding population, and it showed that anthocyanin levels of husks ranged from 17.3% to 18.9% of dry weight, roughly 10 times more than the standard current purple corn kernel content, 1.78%. LC-MS/MS analysis demonstrated that the main components of purple corn husk anthocyanin were cyanidin derivatives, and the most prevalent constituents were cyanidin-3-glucoside, cyanidin-3-succinylglucoside and pelargonidin-3-(6''-malonylglucoside). The results suggested that high-anthocyanin corn will boost the purple corn pigment production far more than its current level.
We constructed a genetic linkage map with Isaac-TD, SSR, and SNAP markers in a RIL population which had been derived from a cross of waxy corn (KW7) and dent corn (Mo17). A total of 368 markers, including 241 Isaac-TD, 121 SSR, and 6 SNAP markers, were assigned to 10 linkage groups, encompassing 1687.0 cM, with an average genetic distance of 4.6 cM between markers. SSR markers were utilized as chromosome anchors, in order to assign the Isaac-TD markers to the chromosomes, and the number of markers in each of the linkage groups ranged between 22 and 49. The majority of the Isaac-TD markers were determined to have been distributed throughout the ten maize chromosomes. In linkage analysis of the Isaac-TD markers with genes of agronomic interest, six genes related with maize kernel starch biosynthesis, ae1, bt2, sh1, sh2, su1, and wx1, were analyzed and shown that they were closely linked with either the Isaac-TD or SSR markers on chromosomes of 3, 4, 5, and 9. We observed and mapped segregation-distorted markers on chromosomes 1, 5, 6, 7, 8, and 10, where these markers were clustered. The Isaac-TD or SSR markers which were closely linked with starch synthesis genes may prove useful in marker-assisted breeding programs.
Avian reoviruses (ARVs) cause severe arthritis, tenosynovitis, pericarditis, and depressed growth in chickens, and these conditions have become increasingly frequent in recent years. Studies on the role of wild birds in the epidemiology of ARVs are insufficient. This study provides information about currently circulating ARVs in wild birds by gene detection using diagnostic RT-PCR, virus isolation, and genomic characterization. In this study, we isolated and identified 10 ARV isolates from 7,390 wild birds' fecal samples, including migratory bird species (bean goose, Eurasian teal, Indian spot-billed duck, and mallard duck) from 2015 to 2019 in South Korea. On comparing the amino acid sequences of the σC-encoding gene, most isolates, except A18-13, shared higher sequence similarity with the commercial vaccine isolate S1133 and Chinese isolates. However, the A18-13 isolate is similar to live attenuated vaccine av-S1133 and vaccine break isolates (SD09-1, LN09-1, and GX110116). For the p10- and p17-encoding genes, all isolates have identical fusion associated small transmembrane (FAST) protein and nuclear localization signal (SNL) motif to chicken-origin ARVs. Phylogenetic analysis of the amino acid sequences of the σC-encoding gene revealed that all isolates were belonged to genotypic cluster I. For the p10- and p17-encoding genes, the nucleotide sequences of all isolates indicated close relationship with commercial vaccine isolate S1133 and Chinese isolates. For the σNS-encoding gene, the nucleotide sequences of all isolates indicated close relationship with the Californian chicken-origin isolate K1600657 and belonged to chicken-origin ARV cluster. Our data indicates that wild birds ARVs were derived from the chicken farms. This finding suggests that wild birds serve as natural carriers of such viruses for domestic poultry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.