In this study, we develop Janus membranes comprising a hydrophilic zwitterionic polymer layer and an omniphobic (all-liquid-repelling) porous substrate that simultaneously possess fouling and wetting resistances. An omniphobic membrane was first fabricated by attaching silica nanoparticles (SiNPs) to the fibers of a quartz fiber mat, creating multilevel reentrant structures, followed by surface fluorination to reduce the surface energy. The Janus membrane was then fabricated by grafting a zwitterionic polymer brush layer via surface-initiated atom-transfer radical-polymerization (ATRP) on the omniphobic substrate. Membrane characterizations, including Fourier-transform infrared spectroscopy, fluorescence microscopy, and contact angle measurements, confirm that the surface hydrophilicity can be finely tuned by adjusting the duration of the ATRP reaction. Also, the zwitterionic polymer brush layer was confined on the top surface of the Janus membrane, rendering the surface hydrophilic, while the remaining part of the Janus membrane remained omniphobic, resisting the wicking of lowsurface-tension liquids including ethanol and hexane. A static oil-fouling test showed that crude oil droplets irreversibly fouled an omniphobic membrane (without a hydrophilic top layer) in water. In contrast, oil droplets placed on the Janus membrane in air were immediately desorbed upon its immersion in water. Finally, we performed direct-contact membrane distillation (MD) experiments using a crude-oil-in-saline (NaCl) water emulsion as a feed solution, simulating highly saline oily wastewater. The Janus membrane exhibited superior wetting and fouling resistances, with a stable water flux and nearly perfect salt rejection, while an omniphobic membrane failed in the desalination process. Our work highlights the great potential of antiwetting and antifouling Janus membranes for water reclamation from challenging industrial wastewaters through MD.
According to the cohesion-tension theory, mangrove trees desalinate salty water using highly negative pressure (or tension) that is generated by evaporative capillary forces in mangrove leaves. Here, we demonstrate a synthetic mangrove that mimics the main features of the natural mangrove: capillary pumping (leaves), stable water conduction in highly metastable states (stem), and membrane desalination (root). When using nanoporous membranes as leaves, the maximum osmotic pressures of saline feeds (10 to 30 bar) allowing pure water uptake precisely correspond to expected capillary pressures based on the Young-Laplace equation. Hydrogel-based leaves allow for stable operation and desalination of hypersaline solutions with osmotic pressures approaching 400 bar, fivefold greater than the pressure limits of conventional reverse osmosis. Our findings support the applicability of the cohesiontension theory to desalination in mangroves, provide a new platform to study plant hydraulics, and create possibilities for engineered membrane separations using large, passively generated capillary pressures.
Dissolved biomethane in anaerobic effluents has long been a hurdle for energy harvesting through anaerobic wastewater treatment processes. Here, we present a novel membrane process for dissolved methane recovery through the normal range of domestic wastewater temperatures by utilizing an omniphobic (nonwetting) microporous membrane. In a process driven by a solubility gradient, dissolved methane is extracted from a methane-rich aqueous solution (feed), transported across the omniphobic membrane, and absorbed into a nonpolar organic solvent (draw) that has a high solubility for methane. We fabricated the omniphobic membrane by coating a microporous polymeric membrane with silica nanoparticles, followed by surface fluorination. Using the omniphobic membrane, we demonstrate that nearly ≥90% of dissolved methane is recovered from methane-saturated feedwater at 15, 25, and 35 °C, simulating anaerobic effluents produced in the psychrophilic to mesophilic temperature range, while negligible transport of water is observed. Further measurements and comparative energy analysis suggest that this novel process can enable net energy production, with a higher value at a lower temperature, which outperforms other dissolved methane recovery techniques.
Membrane distillation (MD) has been receiving considerable attention as a promising technology for desalinating industrial wastewaters. While hydrophobic membranes are essential for the process, increasing membrane surface hydrophobicity generally leads to the reduction of water vapor flux. In this study, we investigate the mechanisms responsible for this trade-off relation in MD. We prepared hydrophobic membranes with different degrees of wetting resistance through coating quartz fiber membranes with a series of alkylsilane molecules while preserving the fiber structures. A trade-off between wetting resistance and water vapor flux was observed in direct-contact MD experiments, with the least-wetting-resistant membrane exhibiting twice as high vapor flux as the most wetting-resistant membrane. Electrochemical impedance analysis, combined with fluorescence microscopy, elucidated that a lower wetting resistance (still water-repelling) allows deeper penetration of the liquid–air interfaces into the membrane, resulting in an increased interfacial area and therefore a larger evaporative vapor flux. Finally, we performed osmotic distillation experiments employing anodized alumina membranes that possess straight nanopores with different degrees of wetting resistance, observed no trade-off, and substantiated this proposed mechanism. Our study provides a guideline to tailor the membrane surface wettability to ensure stable MD operations while maximizing the water recovery rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.